当前位置:首页 » 公共卫生 » 污染羽

污染羽

发布时间: 2020-11-26 02:20:31

1. BTEX在河流渗滤系统中的环境行为

(一)BTEX的淋溶行为

淋溶作用是指通过雨水天然下渗或人工灌溉,将上方土层中的某些矿物盐类或有机物质溶解并转移到下方土层中的作用,它是污染物随渗透水沿土壤垂直剖面向下的运动,是污染物在水土系统中发生的一种综合性的环境行为。由于淋溶作用使溶解于土壤孔隙水中的污染物随土壤孔隙水的垂直运动而不断向下入渗,因此能够造成污染物对地下水的危害。

BTEX各组分的溶解度相对较高,是汽油组分中最容易在土壤中随孔隙水迁移的成分。影响BTEX淋溶作用的主要因素包括其在土壤的吸附作用和微生物降解作用。目前单独对BTEX淋溶作用的研究还不多见,大多是伴随BTEX在包气带中的吸附和降解行为的研究而进行的。胡黎明等(2003)的试验模拟研究发现,BTEX从泄漏点通过非饱和土层向下运移,在地下水位以上形成了高质量分数区,并沿地下水面发生侧向迁移,部分溶解的BTEX组分在水体扩散。通常,地下水的流动性对BTEX的迁移有一定影响。而影响BTEX淋溶作用的土壤特性包括有机质含量、孔隙率和矿物质表面积等。然而,Huesemann et al.(2005)的研究却发现,BTEX在高浓度原油污染的老化土壤中的淋溶行为主要取决于石油烃的溶解平衡,而与土壤特性无关。

(二)BTEX在渗滤过程中的降解行为

BTEX在河流渗滤系统中存在多种迁移转化行为,包括挥发、吸附和微生物降解等。其中挥发、吸附虽然能够延缓对地下水产生的危害,但并不能改变其在环境中的总量,而降解是去除有机污染物的唯一有效途径。BTEX在土壤中的降解方式主要有两种:非生物降解和生物降解。非生物降解包括化学降解和光解作用。生物降解是引起有机污染物分解的最重要的环境行为之一。研究表明,降解是从土壤中去除BTEX的最佳方式(Kao et al.,2006)。微生物降解主要是利用微生物将BTEX污染物矿化为水、CO2和CH4等环境可接受的物质,从而达到去除BTEX污染的目的。

1.微生物降解的条件和影响因素

A.微生物降解的条件

(1)微生物。天然条件下,微生物降解作用的发生首先要求有微生物的存在,即土著微生物存在。研究表明,自然界蕴藏着无穷的微生物个体,地下在很大深度范围内,甚至在500~600m深处都活跃着各种微生物菌群(Thomas,1997a)。从结构上看,包括原核生物、真核生物、非细胞型生物;从生理特征上看,有自养型、异养型、光能型等。在河流沉积物中存在大量能够降解有机污染物的微生物菌群,大多数已发现的微生物属于好氧微生物,同时也发现了一些厌氧菌。Smith et al.(1998)在一受污染的砂砾石含水层中观察到有细菌参与了反硝化作用。

(2)碳源和能源。许多合成有机物可以像天然有机物那样作为微生物的生长基质,有机化合物既是微生物的碳源,又是能源。在微生物代谢过程中,分解有机化合物,获得生长、繁殖所需的碳及能量。当微生物代谢时,一些有机污染物作为食物源提供能量和细胞生长所需的碳;另一些有机物不能作为微生物唯一的碳源和能源,必须由另外的化合物提供,因此有机物生物降解存在两种代谢模式:生长代谢和共代谢模式(戴树桂,2006)。在微生物生长代谢过程中,同时需要电子供体和电子受体的参与。电子供体指在氧化还原反应中失去电子而被氧化的物质;电子受体指氧化还原反应中得到电子而被还原的物质。当电子在两者之间传递时,微生物获得生长所需的能量。一般,在代谢过程中有机污染物常是电子供体。

(3)电子受体。地下水环境中许多组分可作为电子受体,包括O2、、Fe(Ⅲ)、和CO2。电子受体不同,微生物的代谢方式也不同。好氧条件下苯矿化为CO2产生的能量最多,在厌氧条件下,产能的顺序由高到低为反硝化作用、铁还原作用、硫酸盐还原作用和产甲烷作用。

有机污染物的微生物降解是一种氧化还原反应,反应中有机物失去电子被氧化,电子受体得到电子被还原。微生物利用有机物与电子受体间的氧化还原反应生成的能量,合成新细胞,并维持已生成的旧细胞。该过程中只有一部分自由能能够为细胞所利用,从反应的整体来看,微生物只是起氧化还原催化剂的作用。它既不能氧化基质,也不能还原电子受体,只是起到传递电子的作用。每种反应都有其发生的氧化还原条件,只有在特定的条件下微生物才能起作用。通常,有机物的降解首先利用氧作为电子受体,其次是、Fe(Ⅲ)、和CO2

B.影响有机物生物降解的因素

有机污染物的生物降解主要取决于两类因素,一类是有机污染物本身的特性,包括有机化合物的结构和物理化学性质,微生物本身的特性,主要是微生物群体的活性;另一类是控制反应速率的环境因素,包括温度、酸碱度、湿度、溶解氧、微生物的营养物、吸附作用等。

(1)有机化合物的理化性质。有研究表明,有机污染物的化学结构、物理化学性质与微生物降解之间存在以下的一些关系和规律。

1)结构简单的有机化合物一般先发生降解,结构复杂的后发生降解。分子量小的有机化合物比分子量大的有机化合物易降解。

2)如果有机化合物主要分子链上除碳元素外还有其他元素时,则不易被降解。

3)取代基的位置、数量、碳链的长短也会影响有机污染物的生物可利用性。

苯环结构较为稳定,而甲基的存在提高了甲苯的生物可利用性。与甲苯相比,二甲苯和三甲苯随甲基数量的增加发生降解的可能性减弱。甲苯和乙苯相比,甲苯的微生物降解驯化期短,平均降解速率大。这说明取代基中碳链越长,微生物降解程度越低。在二甲苯的三种同分异构体中,间二甲苯和对二甲苯的微生物降解难易程度相近,间二甲苯略优于对二甲苯,而邻二甲苯的微生物降解作用最为微弱。

另外,有机化合物的溶解度对微生物也有影响,一般说来,微生物只能有效地降解溶解于水中的有机污染物,因此溶解度高的有机化合物生物可利用性较高。不溶于水的化合物,其代谢反应只限于微生物能接触到的水和污染物的界面处,有限的接触面妨碍了难溶化合物的降解。

(2)微生物群体的特性。土壤中微生物的种类、分布、密度、群体间的相互作用,以及驯化程度直接影响到有机污染物的降解性能。当土壤中存在降解污染物的微生物,但其数量过少时,会导致降解速率低,其对水质净化作用的贡献不大。

(3)环境因素包括如下六方面。

温度 通常,微生物生长的温度范围介于-12~100℃之间,大多数微生物生活在30~40℃之间。在适宜的温度范围内,微生物可大量生长繁殖。

另外,温度对地下水中溶解氧的含量,以及有机污染物的溶解度影响很大。随温度升高,溶解氧含量降低。天然条件下,地理位置和季节的变化对微生物降解的速度和效率起到了控制作用。

酸碱度 pH值对微生物的生命活动、物质代谢也有较大影响。大多数微生物对pH值的适应范围介于4~10之间,最适值介于6.5~7.5之间。有机污染物的生物降解往往是一个产酸或产碱的过程,过高或过低的pH值对微生物的生长繁殖都不利。这就需要土壤-水环境具有较强的缓冲能力,否则pH值过高或过低都将抑制微生物的生长。

湿度 水是微生物生命活动必需的一种营养成分,也是影响微生物降解的重要因素。湿度的大小影响着氧的含量水平,在包气带中,含水量达到80%~90%时,即气体的体积百分比低于10%~20%时,就从好氧条件转化为厌氧条件。

溶解氧和Eh值 土壤中溶解氧的量和Eh值的大小决定着微生物降解过程中以何种化合物作为电子受体。一般情况下,地下水污染羽中会出现微生物降解作用的分带现象。从污染源到污染羽边缘,氧化性逐渐增强,表现为溶解氧和Eh值增大,生物降解作用也依次从产甲烷作用、硫酸盐还原、铁还原、锰还原和反硝化作用过渡为好氧作用。

微生物的营养物 微生物生长除基质外,还需要氮、磷、硫、镁等营养元素。如果环境中这些营养成分供应不足,就会限制有机污染物的降解。自然环境中,微生物表现出对低营养条件很适应,许多微生物在高营养条件下生长缓慢或根本不生长,在低营养条件下却能够大量繁殖(Ghiores et al.,1985)。

吸附作用 吸附是影响有机污染物在河流渗滤系统中迁移转化的重要环境行为之一,本部分主要讨论吸附作用对微生物降解作用的影响。有机化合物和微生物在土壤颗粒表面都存在吸附现象,也可将细菌看做活的胶体颗粒,它通过分子吸附黏附在颗粒表面。近年来,国内外许多学者将吸附作用与微生物降解作用结合起来开展了大量的研究工作。研究表明,吸附作用阻碍了有机污染物的微生物降解。如果吸附质本身具有抑制作用,它的吸附会降低附着的微生物的活性,但是同时会增加游离微生物的活性。

2.BTEX生物降解研究综述

最初,研究的重点是好氧条件下BTEX的微生物降解。实验室和野外的试验都证明,在好氧条件下,微生物能够降解BTEX(Chiang et al.,1989;Song et al.,1990;Wilson et al.,1983)。好氧微生物降解具有产能高、降解速度快的优点。但是,因为氧在水中的溶解度低,溶解氧很快会被有机物消耗,地下水系统中的污染区多处于厌氧状态。因此,目前的研究重点已转向厌氧条件下BTEX的微生物降解性能的研究。

最早的关于厌氧条件下苯降解的报道出现在1980年(Nales et al.,1998)。在Ward的研究中,少量放射性标志的苯和甲苯在产甲烷富集培养试验中以14CH414CO2的形式被回收。随后Gribic-Galic et al.于1987年报道,污泥接种的混合产甲烷富集培养过程中苯被矿化为CO2和CH4。近年来,许多研究人员(Edwards et al.,1994;Kazumi et al.,1997;Weiner et al.,1998a,b;Wilson et al.,1986)。分别进行了在产甲烷条件下苯的降解性能试验研究。1992年,Edwards et al.(1992a)在添加硫酸盐的严格控制的厌氧含水层物质微环境中,观察到放射性标志的苯被完全矿化为CO2。Lovely et al.(1995)的研究表明,在还原的海湾沉积物中,苯的降解与硫酸盐还原反应明显相关,这是最早利用天然沉积物中的组分作为厌氧条件下苯微生物降解的电子受体的报道。Hagg、Beller和Weiner等人的研究也都发现苯的降解与硫酸盐还原反应有关(Beller et al.,1992;Hagg et al.,1991;Weiner et al.,1998ab)。Lovely、Rugge和Anderson等还发现,厌氧条件下苯的矿化还与铁还原有关(Anderson et al.,1998;Lovley et al.,1994,1996;Rugge et al.,1995)。Kuhn et al.(1985)的研究表明,河流沉积物中的反硝化菌能降解二甲苯的三种同分异构体。Zeyer和Kuhn在含水层物质土柱试验中观察到反硝化条件下间二甲苯和甲苯的快速降解(Zeyer et al.,1986;Kuhn et al.,1988)。Evans et al.(1991)分离出了将甲苯作为唯一基质的反硝化细菌,同时还发现了邻二甲苯和甲苯的共代谢作用。Hutchins et al.(1991)发现反硝化条件下BTEX可降解。目前,关于反硝化条件下苯的生物降解性能的认识还未达成一致的结论,多数研究认为在反硝化条件下苯不会被降解(Alvarez et al.,1995;Anid et al.,1993;Ball et al.,1996;Barbaro et al.,1992;Borden et al.,1997;Evans et al.,1991;Hutchins et al.,1991;Kuhn et al.,1988;Kao,1997;Lovley,1997;Thoms et al.,1997b;Zeyer et al.,1986),这通常认为是由于苯环的结构稳定。而有的研究则认为,反硝化条件下苯能发生降解(Burland et al.,1999;Gersberg et al.,1991;Nales et al.,1998;Major et al.,1988;Morgan et al.,1993;吴玉成等,1999)。

微生物是降解作用的主体,在降解的过程中起着关键的作用,目前已经从环境中分离出了多种能够降解BTEX的微生物菌群,细菌是能够代谢降解有机污染物最常见的微生物,另一些研究发现,在降解BTEX过程中真菌也起到了明显的作用(Leahy et al.,2003;Nikolova et al.,2005;Van Hamme et al.,2003;Schulze et al.,2003)。

土壤中,BTEX的微生物降解取决于各组分的性质、微生物菌群、土壤的理化性质和影响微生物生长的环境因素等。Dou et al.(2008a,b)运用驯化的反硝化混合菌群进行了BTEX的厌氧降解试验。结果表明,混合菌群能够在反硝化条件下有效降解苯、甲苯、乙苯、邻二甲苯、间二甲苯和对二甲苯,BTEX 的降解规律符合底物抑制的Monod模型;他们给出了混合菌群在反硝化和硫酸盐还原条件下对BTEX六种组分的厌氧降解速率的排序是:甲苯>乙苯>间二甲苯>邻二甲苯>苯>对二甲苯;另外,他们还考察了相同的细菌在不同电子受体条件下对BTEX的降解性能,与硫酸盐相比,硝酸盐对BTEX的降解效率更高。

微生物对BTEX的降解不仅与各组分的性质相关,而且与BTEX各组分的初始浓度有关,当各组分的初始浓度不同时,微生物会表现出不同的利用类型。生物优先利用何种组分作为基质取决于其毒性和初始浓度(Jo et al.,2008)。不同基质共同存在时,微生物对BTEX的降解也会表现出不同的效应,综合起来主要表现为三个方面:①协同效应,即一种BTEX组分的存在促进其他组分的降解;②拮抗效应,一种BTEX组分的存在抑制其他组分的降解;③低浓度BTEX组分对其他BTEX组分的降解具有促进作用,然而在高浓度时产生抑制作用(Dou et al.,2008a,b)。Littlejohns et al.(2008)通过建立数学模型来定量研究以上这些相互作用,发现交互参数的动力学模型和共代谢模型能够较准确地预测BTEX的降解效率和生物量。

如果向原有土壤中接种BTEX降解菌比单独用该降解菌降解BTEX污染物速度更快。甲苯、乙苯和二甲苯可以被加入的真菌降解,然而苯需要土著微生物才能被降解。中性条件下,真菌的存在对土壤降解能力的影响较小。但是,在酸性条件下,固有降解菌的活性会受到抑制,真菌的存在会明显加快甲苯和乙苯的降解过程(Prenafeta et al.,2004)。

2. 地下水污染水力控制措施怎么理解

随着工业生产的高速发展,我国地下水污染的问题日益突出,地下水污染所带来的对环境和经济发展的影响也日趋显露。因此,加强对地下水污染的治理和相应技术的开发就成为一种迫切的需要。客观上讲,我国目前在地下水污染调查及地下水污染物迁移转化模式方面做了不少基础性工作,但在具体的地下水污染治理技术方面做的工作却不多,而国外,尤其是欧美国家自20世纪70年代以来在地下水点源污染治理方面取得了很大的进展,且逐渐发展形成较为系统的地下水污染治理技术。地下水污染治理技术归纳起来主要有:物理处理法、水动力控制法、抽出处理法、原位处理法。
1.1物理法
物理法是用物理的手段对受污染地下水进行治理的一种方法,概括起来又可分为:
①屏蔽法
该法是在地下建立各种物理屏障,将受污染水体圈闭起来,以防止污染物进一步扩散蔓延。常用的灰浆帷幕法是用压力向地下灌注灰浆,在受污染水体周围形成一道帷幕,从而将受污染水体圈闭起来。其他的物理屏障法还有泥浆阻水墙、振动桩阻水墙、板桩阻水墙、块状置换、膜和合成材料帷幕圈闭法等,原理都与灰浆帷幕法相似。总的来说,物理屏蔽法只有在处理小范围的剧毒、难降解污染物时才可考虑作为一种永久性的封闭方法,多数情况下,它只是在地下水污染治理的初期,被用作一种临时性的控制方法。
②被动收集法
该法是在地下水流的下游挖一条足够深的沟道,在沟内布置收集系统,将水面漂浮的污染物质如油类污染物等收集起来,或将所有受污染地下水收集起来以便处理的一种方法。被动收集法一般在处理轻质污染物(如油类等)时比较有效,它在美国治理地下水油污染时得到过广泛的应用。
1.2水动力控制法
水动力控制法是利用井群系统,通过抽水或向含水层注水,人为地改变地下水的水力梯度,从而将受污染水体与清洁水体分隔开来。根据井群系统布置方式的不同,水力控制法又可分为上游分水岭法和下游分水岭法。上游分水岭法是在受污染水体的上游布置一排注水井,通过注水井向含水层注入清水,使得在该注水井处形成一地下分水岭,从而阻止上游清洁水体向下补给已被污染水体;同时,在下游布置一排抽水井将受污染水体抽出处理。而下游分水岭法则是在受污染水体下游布置一排注水井注水,在下游形成一分水岭以阻止污染羽流向下游扩散,同时在上游布置一排抽水井,抽出清洁水并送到下游注入。同样,水动力控制法一般也用作一种临时性的控制方法,在地下水污染治理的初期用于防止污染物的扩散蔓延。
1.3抽出处理法
抽出处理法是当前应用很普遍的一种方法,可根据污染物类型和处理费用来选用,大致可分为三类:
①物理法。包括:吸附法、重力分离法、过滤法、反渗透法、气吹法和焚烧法等。
②化学法。包括:混凝沉淀法、氧化还原法、离子交换法和中和法等。
③生物法。包括:活性污泥法、生物膜法、厌氧消化法和土壤处置法等。受污染地下水抽出后的处理方法与地表水的处理相同,需要指出的是,在受污染地下水的抽出处理中,井群系统的建立是关键,井群系统要能控制整个受污染水体的流动。处理后地下水的去向有两个,一是直接使用,另一个则是用于回灌。用于回灌多一些的原因是回灌一方面可稀释受污染水体,冲洗含水层;另一方面还可加速地下水的循环流动,从而缩短地下水的修复时间。
1.4原位处理法
原位处理法是地下水污染治理技术研究的热点,不但处理费用相对节省,而且还可减少地表处理设施,最大程度地减少污染物的暴露,减少对环境的扰动,是一种很有前景的地下水污染治理技术。原位处理技术又包括物理化学处理法及生物处理法。
1.4.1物理化学处理法
①加药法。通过井群系统向受污染水体灌注化学药剂,如灌注中和剂以中和酸性或碱性渗滤液,添加氧化剂降解有机物或使无机化合物形成沉淀等。
②渗透性处理床。渗透性处理床主要适用于较薄、较浅含水层,一般用于填埋渗滤液的无害化处理。具体做法是在污染羽流的下游挖一条沟,该沟挖至含水层底部基岩层或不透水粘土层,然后在沟内填充能与污染物反应的透水性介质,受污染地下水流入沟内后与该介质发生反应,生成无害化产物或沉淀物而被去除。常用的填充介质有:a.灰岩,用以中和酸性地下水或去除重金属;b.活性炭,用以去除非极性污染物和CCl4、苯等;c.沸石和合成离子交换树脂,用以去除溶解态重金属等。
③土壤改性法。利用土壤中的粘土层,通过注射井在原位注入表面活性剂及有机改性物质,使土壤中的粘土转变为有机粘土。经改性后形成的有机粘土能有效地吸附地下水中的有机污染物。
1.4.2生物处理法
原位生物修复的原理实际上是自然生物降解过程的人工强化。它是通过采取人为措施,包括添加氧和营养物等,刺激原位微生物的生长,从而强化污染物的自然生物降解过程。通常原位生物修复的过程为:先通过试验研究,确定原位微生物降解污染物的能力,然后确定能最大程度促进微生物生长的氧需要量和营养配比,最后再将研究结果应用于实际。现在所使用的各种原位生物修复技术都是围绕各种强化措施来进行的,例如强化供氧技术大致有以下几种:
①生物气冲技术。该技术与原位物化法中的气冲技术相似,都是将空气注入受污染区域底部,所不同的是生物气冲的供气量要小一些,只要能达到刺激微生物生长的供气量即可。
②溶气水供氧技术。这是由维吉尼亚多种工艺研究所(VirginiaPolytechnicInstitute)的研究人员开发的技术,它能制成一种由2/3气和1/3水组成的溶气水,气泡直径可小到55μm。把这种气水混合物注入受污染区域,可大大提高氧的传递效率。
③过氧化氢供氧技术。该技术是把过氧化氢作为氧源注入到受污染地下水中,过氧化氢分解以后产生氧以供给微生物生长。过氧化氢常常要与催化剂一起注入,催化剂用以控制过氧化氢的分解速度,使之与微生物的耗氧速度相一致。

3. 抽水处理技术的系统介绍

抽水处理技术是最早出现的地下水污染修复治理技术,也是地下水异位修复的代表性技术。自20世纪80年代开展地下水污染修复治理至今,地下水污染治理仍以抽水处理技术为主(图11.23)。

图11.23 抽水处理技术概念模型

抽水处理技术一般可分为两大部分:地下水动力控制过程和地上污染物处理过程。根据地下水污染范围和程度,在污染场地布置一定数量的抽水井,通过水泵将将受污染的地下水抽取上来,然后利用地面净化设备进行地下水污染治理。在抽水过程中,抽水井水位下降,在水井周围形成地下水位降落漏斗,使周围地下水不断流向抽水井,减少了污染扩散和迁移。最后,根据污染场地的实际情况,对处理过的受污染地下水进行排放和综合利用,可以用于景观用水、回灌到地下或用于当地供水等。

抽水处理技术适用范围广,对于污染范围大、污染晕埋藏深的污染场地也适用。但其自身也存在一些局限性:①当非水相溶液出现时,由于毛细张力而滞留的非水相溶液几乎不太可能通过水泵抽水的方法清除;②该技术开挖处理工程费用较高,而且涉及地下水的抽去和回灌,对污染场地干扰大;③需要持续的能量供给,以确保地下水的抽出和水处理系统的运行,同时还要求对抽水系统和处理系统进行定期的维护与监测。

11.3.1.1 抽水系统

抽水的最终目标是合理地设计和布置抽水井,使已受污染的地下水完全抽出来。为了截获地下水污染羽状体,在其下游布置一个或多个抽水井,它们都有水流影响区,称为截获区。截获区包含地下水污染羽状体的整个范围。截获区的形状受地下流速、抽水量及含水层渗透性的影响,截获区范围取决于抽水时间的长短和抽水量的大小,抽水时间越长、抽水量越大,其延伸范围也越大。

截获区的计算方法是假定含水层为一个均质各向同性的等厚承压含水层,地下水流向与X轴平行,但流向为X负方向,抽水井为完整井,抽水井布置在Y轴上。在上述条件下即可推导出计算截获区的水力学方程。

单井截获区的设计计算,假设抽水井位于直角坐标原点,截获区以外的地下水不流向抽水井,截获区边界水力学方程为

变环境条件下的水资源保护与可持续利用研究

式中:Q为抽水井的抽水量,m3/d;B为含水层厚度,m;v为区域地下水渗流速度, m/d。

式中唯一的未知参数是Q/Bv,其量纲为m。随着Q/Bv值的增大,截获区范围也增大。停滞点在抽水井的下游,与抽水井的距离为Q/2πBv。

多井截获区的设计计算,假设当抽水井为四眼或大于四眼时,截获区范围的水力学方程式为

变环境条件下的水资源保护与可持续利用研究

式中:Y1,Y2,…,Yn为抽水井1,2,…,n在Y轴上的位置。

相邻两井间的最优距离约为1.2Q/πBv。

上述方程是在假设均质、等厚、各向同性的承压含水层的基础上推导出来的。实际上,含水层的不均质非各向同性居多。因此,用上述方程计算的结果不可避免地会产生误差,在实际工作中应反复校验并予以校正。对于潜水含水层而言,只要抽水井水位降深与整个含水层相比很小,上述方程计算误差不是很大。

11.3.1.2 处理系统

受污染的地下水抽出后的处理方法与地表水的处理相同。针对本文要处理的重点污染物六价铬,目前常采用的方法有很多,主要有化学还原法、沉淀法、钡盐法、离子交换法、离子交换纤维法、无机材料吸附法、电解法、絮凝沉淀法、吸附法、反渗透膜法等。

4. 什么是污染羽

pollution plume污染晕或者污染羽,指污染物在环境介质中的迁移包括对流扩散、机械弥散和分子扩散等作用,在这些的共同作用下,污染物的分布往往呈由排放点发散的带状。

5. 地下水被羽绒服厂污染,会有哪些有毒物质,去找哪些部门解决

地下水修复技术篇
针对土壤和地下水污染的现状,许多国家已采取或正在采取相应的防护措施,使得地下水修复技术成为现在国际环境领域研究的一个热点问题之一.
地下水的主要修复方法包括:
原位修复:监控条件下的自然衰减法(MNA)、渗透性反应强(PRB);
异位修复:抽出处理法(P&T)
MNA
优点是污染物最终能转化成无毒的副产物、无须人为介入、不会涉及到废物的重新产生或迁移、费用低廉、克服机械化修复设施所带来的局限.
缺点是进行长期监测并负担相关费用、时间很长;受当地水文地质条件的自然变化及人为因素的影响;有利的水文和地球化学条件可能随着时间而发生变化,从而导致曾经稳定化了的污染物重新发生迁移;对修复成果产生负面影响;含水层的各向异性可能是场地特征复杂化;生物降解的中坚产物可能比原来的化合物更毒.
P&T
抽取处理法(Pump and Treat,P&T)是最早使用、应用最广的传统经典方法,从污染场地抽出被污染的水,并用洁净的水置换,同时对抽出的水加以处理.需要注意的是,必须把对抽取处理系统的监测作为修复措施整体必不可少的组成部分,监测系统的运行状态.处理后的地下水可直接使用,或者回灌以稀释受污染水体、冲洗含水层,加速地下水的循环流动.
该方法存在操作繁琐、时间长、成本高的问题,需要长期监测和维护.而且,一旦抽水停止,污染物浓度又会升高,不能从根本解决问题.
近几年,随着研究的深入,透水性反应墙法(Permeable ReactiveBarrier,PRB)被认为是替代传统抽取处理方法的一种有效方法 .该技术广泛用于处理地下水中的有机和无机污染物,它具有能够较长时间持续原位处理、处理组分较多、价格相对便宜等优点,因此近年来受到越来越多的关注.天猫美国普卫欣提示:雾霾天气出行记得做好防护。
PRB
PRB是一种原位被动修复技术,由透水的反应介质组成,一般安装于地下水污染羽状体的下游,通常与地下水流相垂直,并且它也可以作为污染地下水的地面处理设施.当地下水在自身水力梯度作用下通过活性渗滤墙时,污染物与墙体材料发生各种反应而被去除,从而达到地下水修复的目的.
根据PRB反应机理的不同,可以分为以下几种反应墙.
化学沉淀反应墙
氧化—还原反应墙
吸附反应墙
生物降解反应墙
PRB的结构形式

6. 请问什么是地下水污染羽

主要指人类活动引起地下水化学成分、物理性质和生物学特性发生改变而使质量下降的现象。地表以下地层复杂,地下水流动极其缓慢,因此,地下水污染具有过程缓慢、不易发现和难以治理的特点。地下水一旦受到污染,即使彻底消除其污染源,也得十几年,甚至几十年才能使水质复原。至于要进行人工的地下含水层的更新,问题就更复杂了。

7. 地下水污染的预防保护

应以预防为主。为此,必须进行必要的监测,一旦发现地下水遭受污染,就应及时采取措施,防微杜渐。最好是尽量减少污染物进入地下含水层的机会和数量,诸如污水聚积地段的防渗,选择具有最优的地质、水文地质条件的地点排放废物等。地下水污染治理技术归纳起来主要有:物理处理法、水动力控制法、抽出处理法、原位处理法。 物理法是用物理的手段对受污染地下水进行治理的一种方法,概括起来又可分为:
①屏蔽法 该法是在地下建立各种物理屏障,将受污染水体圈闭起来,以防止污染物进一步扩散蔓延。常用的灰浆帷幕法是用压力向地下灌注灰浆,在受污染水体周围形成一道帷幕,从而将受污染水体圈闭起来。其他的物理屏障法还有泥浆阻水墙、振动桩阻水墙、板桩阻水墙、块状置换、膜和合成材料帷幕圈闭法等,原理都与灰浆帷幕法相似。总的来说,物理屏蔽法只有在处理小范围的剧毒、难降解污染物时才可考虑作为一种永久性的封闭方法,多数情况下,它只是在地下水污染治理的初期,被用作一种临时性的控制方法。
②被动收集法 该法是在地下水流的下游挖一条足够深的沟道,在沟内布置收集系统,将水面漂浮的污染物质如油类污染物等收集起来,或将所有受污染地下水收集起来以便处理的一种方法。被动收集法一般在处理轻质污染物(如油类等)时比较有效,它在美国治理地下水油污染时得到过广泛的应用。
3)水动力控制法
水动力控制法是利用井群系统,通过抽水或向含水层注水,人为地改变地下水的水力梯度,从而将受污染水体与清洁水体分隔开来。根据井群系统布置方式的不同,水力控制法又可分为上游分水岭法和下游分水岭法。上游分水岭法是在受污染水体的上游布置一排注水井,通过注水井向含水层注入清水,使得在该注水井处形成一地下分水岭,从而阻止上游清洁水体向下补给已被污染水体;同时,在下游布置一排抽水井将受污染水体抽出处理。而下游分水岭法则是在受污染水体下游布置一排注水井注水,在下游形成一分水岭以阻止污染羽流向下游扩散,同时在上游布置一排抽水井,抽出清洁水并送到下游注入。同样,水动力控制法一般也用作一种临时性的控制方法,在地下水污染治理的初期用于防止污染物的扩散蔓延。 抽出处理法是当前应用很普遍的一种方法,可根据污染物类型和处理费用来选用,大致可分为三类:
①物理法。包括:吸附法、重力分离法、过滤法、反渗透法、气吹法和焚烧法等。
②化学法。包括:混凝沉淀法、氧化还原法、离子交换法和中和法等。
③生物法。包括:活性污泥法、生物膜法、厌氧消化法和土壤处置法等。受污染地下水抽出后的处理方法与地表水的处理相同,需要指出的是,在受污染地下水的抽出处理中,井群系统的建立是关键,井群系统要能控制整个受污染水体的流动。处理后地下水的去向有两个,一是直接使用,另一个则是用于回灌。用于回灌多一些的原因是回灌一方面可稀释受污染水体,冲洗含水层;另一方面还可加速地下水的循环流动,从而缩短地下水的修复时间。 原位处理法是地下水污染治理技术研究的热点,不但处理费用相对节省,而且还可减少地表处理设施,最大程度地减少污染物的暴露,减少对环境的扰动,是一种很有前景的地下水污染治理技术。原位处理技术又包括物理化学处理法及生物处理法。
1 ①加药法。通过井群系统向受污染水体灌注化学药剂,如灌注中和剂以中和酸性或碱性渗滤液,添加氧化剂降解有机物或使无机化合物形成沉淀等。
②渗透性处理床。渗透性处理床主要适用于较薄、较浅含水层,一般用于填埋渗滤液的无害化处理。具体做法是在污染羽流的下游挖一条沟,该沟挖至含水层底部基岩层或不透水粘土层,然后在沟内填充能与污染物反应的透水性介质,受污染地下水流入沟内后与该介质发生反应,生成无害化产物或沉淀物而被去除。常用的填充介质有:a.灰岩,用以中和酸性地下水或去除重金属;b.活性炭,用以去除非极性污染物和CCl4、苯等;c.沸石和合成离子交换树脂,用以去除溶解态重金属等。
③土壤改性法。利用土壤中的粘土层,通过注射井在原位注入表面活性剂及有机改性物质,使土壤中的粘土转变为有机粘土。经改性后形成的有机粘土能有效地吸附地下水中的有机污染物。
④冲洗法。对于有机烃类污染,可用空气冲洗,即将空气注入到受污染区域底部,空气在上升过程中,污染物中的挥发性组分会随空气一起溢出,再用集气系统将气体进行收集处理;也可采用蒸汽冲洗,蒸汽不仅可以使挥发性组分溢出,还可以使有机物热解;另外,用酒精冲洗亦可。理论上,只要整个受污染区域都被冲洗过,则所有的烃类污染物都会被去除。
⑤射频放电加热法。通入电流使污染物降解。 原位物化法在运用时需要注意的是堵塞问题,尤其是当地下水中存在重金属时,物化反应易生成沉淀,从而堵塞含水层,影响处理过程的进行。
2 原位生物修复的原理实际上是自然生物降解过程的人工强化。它是通过采取人为措施,包括添加氧和营养物等,刺激原位微生物的生长,从而强化污染物的自然生物降解过程。通常原位生物修复的过程为:先通过试验研究,确定原位微生物降解污染物的能力,然后确定能最大程度促进微生物生长的氧需要量和营养配比,最后再将研究结果应用于实际。如今所使用的各种原位生物修复技术都是围绕各种强化措施来进行的,例如强化供氧技术大致有以下几种:
①生物气冲技术。该技术与原位物化法中的气冲技术相似,都是将空气注入受污染区域底部,所不同的是生物气冲的供气量要小一些,只要能达到刺激微生物生长的供气量即可。
②溶气水供氧技术。这是由维吉尼亚多种工艺研究所(Virginia PolytechnicInstitute)的研究人员开发的技术,它能制成一种由2/3气和1/3水组成的溶气水,气泡直径可小到55 μm。把这种气水混合物注入受污染区域,可大大提高氧的传递效率。
③过氧化氢供氧技术。该技术是把过氧化氢作为氧源注入到受污染地下水中,过氧化氢分解以后产生氧以供给微生物生长。过氧化氢常常要与催化剂一起注入,催化剂用以控制过氧化氢的分解速度,使之与微生物的耗氧速度相一致。
强化营养物供应的技术有渗透墙技术等。该技术是在污染区域内垂直于地下水流方向建一道渗透墙,先将渗透墙内的水抽出,添加营养物后再回灌入渗透墙。这时,添加了营养物的渗透墙就成了一个营养物扩散源,在渗透墙下游就会形成一个生物活跃区,从而强化了生物降解过程。
另外,强化措施还可以从微生物的角度入手。可以先在地表设施中对微生物进行选择性培养,然后再通过注射井注入到受污染区域,或直接引进商品化菌种,都可以起到强化生物降解过程的作用。 总的来说,原位生物修复技术具体的工艺形式很多,但其原理无非都是自然生物降解过程的人工强化。一般情况下,原位生物修复要与井群系统配合运行,即通过抽水井与注水井的配合,以加速地下水的流动及氧和营养物的扩散,从而缩短处理时间。

8. 地下水污染源解析技术

1.3.1.1 地下水污染源识别技术

污染源解析体系的建立,主要是污染源解析方法的建立,自20世纪中期以来,国内外学者对污染物在含水层中的运移、控制、修复进行了大量的研究,随着正问题研究方法以及理论的成熟,污染源识别的反问题逐渐成为研究的重点。源解析的方法根据研究对象的不同可分为扩散模型(Diffusion Model)和受体模型(Receptor Model)。前者以污染源为研究对象,后者以污染区域为研究对象。由于扩散模型需要预先知道污染源的排放量,进而研究污染物的浓度分布或反应机理,但实际情况中我们往往便于得到污染物现状分布,而源的分布以及排放信息较难获得。受体模型通过分析源和受体的理化性质识别可能的污染源和源对受体各成分或各监测点的贡献。20世纪60年代,国外首先在大气领域开始了受体模型的研究,形成一套定性、定量的方法解析污染源,这些方法逐渐在土壤及水环境污染源解析中得到广泛应用。受体模型是相对于正向的扩散模型(源模型)而言,是一个反演未知参数的过程,污染源解析现阶段没有明确统一的定义,简称源解析、源识别,环境中各种元素和化合物含量的信息蕴藏着各污染源的特征信号,根据目标环境中检测到的信号,利用污染源与环境之间的“输入-响应”关系,结合实际条件判别、解析与评价污染物的来源、位置、排放强度和时间序列等要素即污染源的识别。

1.3.1.2 污染源解析数值模拟技术

地下水溶质运移反问题的研究起源于研究数理方程反问题,地下水污染源解析反问题求解也从其中借鉴而来,其反演算法主要有优化-仿真、概率统计等。

从20世纪80年代开始,Wagner(1992)首先在数值模拟基础上,结合线性规划与最小二乘法,将数值模拟的污染物浓度以响应矩阵形式嵌入优化模型中,进行地下水污染源的识别;Aral和Guan(2001)运用响应矩阵识别地下水污染源,并证明该方法比运用线性规划方法更有效;Mahar和 Datta(1997)利用优化地下水监测系统来提高污染源识别的效率,利用监测井获得的数据运用于非线性优化模型中获得更精确的污染源预测;Atmadja和Bagtzoglou(2001)总结了污染源识别中的数学方法,将方法归纳为优化法、解析解法及概率统计方法和地学统计法。

Datta和Chakrabarty(2009)采用了模拟模型外部链接优化模型的方法识别污染源;Singh(2004)等利用人工神经网络法识别未知的污染源,同时研究了遗传算法解二维源解析优化模型;Khalil等(2005)综合利用4种模拟方法(人工神经网络(ANNS)、支持向量机(SVMS)、投影局部加权回归(LWPR)、相关向量机(RVMS))建立了相对复杂和耗时的数学模型,模拟地下水中硝酸盐浓度分布。Wang和Zabaras(2006)利用贝叶斯级数法解对流弥散方程,推导过去某一时间污染物浓度分布,研究了地下水连续渗流的污染来源;Bashi-Azghadi等(2010)利用多目标优化模型——非劣排序遗传算法Ⅱ,链接到MODFLOW和MT3D模型中进行污染源识别,利用并行支持向量机和人工神经网络识别主要污染物。同时还有众多学者对地下水污染源位置及排放时间序列进行解析。

国内针对污染源解析的研究不多,多集中在地表水及水力参数识别领域。地下水方面,国内学者运用水动力-水质耦合模型,建立了基于贝叶斯推理的污染物点源识别模型,通过马尔科夫链蒙特卡罗后验抽样获得了污染源位置和强度的后验概率分布和估计量,较好地处理了模型的不确定性和非线性,在反演结果的可靠性和估计的精度方面采用贝叶斯推理和抽样方法获得的反问题的解具有信息量大,能给出环境水力学参数的后验分布且估计精度高的优点,该方法适用于水文地质条件以及水流运移过程相对复杂的多点源解析。

Sidauruk等(1998)提出一种基于解析解的反演方法,该方法只需要合理的污染浓度序列,可以预测弥散系数、水流流速、污染源浓度、初始位置和污染开始时间,利用参数与浓度对数之间的相关系数,取得参数值,但是由于运算基于解析解,该方法只适用于地层条件简单的均质含水层。Skaggs和Kabala(1994)在一维饱和均质非稳定流模型中运用TR方法,利用复杂的污染物浓度序列,在其他条件未知的情况下,开展源解析工作,指出该方法对数据四舍五入的误差并不敏感,但精度受污染羽测量误差影响明显。

1.3.1.3 污染源解析多元统计法

多元统计方法从统计数据中分析各水质点潜在相关关系,结合实际条件揭露水文地质条件,在污染源解析应用中,无须事先知道污染物源成分谱,适用于水文地质条件简单,观测数据量较大,污染源和污染种类相对较少的地区,其优点是运用简便,可广泛应用统计分析软件进行计算,在实际应用中,多元统计方法只能识别5~8个污染源。

(1)因子分析法

因子分析(Factor Analysis,FA)是研究相关阵或协方差阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。FA法使用简单,不需要研究地区优先源的监测数据,在缺乏污染源成分谱的情况下仍可解析,并可广泛使用统计软件处理数据。其不足之处在于需要输入大量数据,而且只能得到各类元素对主因子的相对贡献百分比。

(2)主成分分析法

主成分分析方法(Principal Component Analysis,PCA)是常用的数据降维方法,应用于多变量大样本的统计分析中。该方法是对所收集的资料作全面的分析,减少分析指标的同时,尽量减少原指标包含信息的损失,把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合指标。

(3)聚类分析法

聚类分析又称群分析(Cluster Analysis,CA),它是研究(对样品或指标)分类问题的一种多元统计方法,即把一些相似程度较大的样品(或指标)聚合为一类,把另一些彼此之间相似程度较大的样品(或指标)聚合为另一类。根据分类对象不同,可分为对样品分类的Q型聚类分析和对指标分类的R型聚类分析两种类型。聚类分析可用SPSS软件直接实现,在水质时空变异、水化学类型分区中得到广泛的应用。

(4)矩阵数据分解法

利用矩阵分解来解决实际问题的分析方法很多,如主成分分析(PCA)、独立分量分析(ICA)、奇异值分解(SVD)、矢量量化(VQ)、因子分析(FA)等。在所有这些方法中,原始的大矩阵被近似分解为低秩的V=WH形式。正定矩阵分解法(Positive Matrix Factorization,PMF)、非负矩阵分解法(Non-negative Matrix Factorization,NMF)和非负约束因子分析(Factor Analysis with Non-negative Constraints,FA-NNC)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法,三者在求解过程中对因子载荷和因子得分均做非负约束,使得因子载荷和因子得分具有可解释性和明确的物理意义。

(5)混合多元统计法

目前应用的混合多元统计法主要有因子分析与多元线性回归相结合,因子分析法与化学质量平衡法相结合,因子分析、化学质量平衡法与多元线性回归3种方法相结合,以上几种方法也可以和聚类分析或GIS相结合以提高分析结果的准确性。其中因子分析与多元线性回归结合在水和沉积物污染源的辨析中有着非常广泛的应用。

1.3.1.4 污染源解析化学质量平衡法

化学质量平衡法(CMB)于1972年由Miller等(1972)第一次提出。CMB法在大气领域的应用已趋于成熟,美国EPA开发了一系列CMB模型,并得到广泛的应用。CMB法是基于质量守恒的方法,利用源和受体化学组成的监测数据建立质量平衡模型以定量计算各污染源对地下水中污染物浓度的贡献率。CMB方法的应用必须满足几点假设条件:①特征污染物成分从源到汇不发生化学反应;②化学物质之间不发生反应;③对受体有明显贡献的源均被纳入模型;④与不同源的成分谱线性无关;⑤测量误差是随机误差且符合正态分布。主要利用污染源组分浓度与采样点数据中各污染组分的浓度求线性和,构成一组线性方程,计算各污染源对取样点的贡献率。

设通过采样分析检测点处成分i的浓度为Xi(mg/L),总共有j个污染源排放点,各排放点处i污染物浓度为Cij,各排放点处成分i对最终监测点处的贡献百分比为Pij,则

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:i——检测点处各不同组分数;

j——污染源的个数;

Xi——检测点测得的成分i的浓度值;

Cij——污染源j点处i组分的浓度;

Pij——各j污染源对检测点处i成分的贡献率。

根据选择测定的组分可建立i个方程,当i≥j,联立方程组原则上可求出Pij,确定各污染源的贡献率识别主要污染源。

地下水中污染物的迁移转化是一个复杂而长期的过程,CMB法是否适合运用于地下水污染源解析还需要进一步的研究和探讨。

1.3.1.5 解析法与GIS相结合法

各种解析方法能够与GIS相结合,从时空上反映刻画污染过程,并为解析提供数据和图像;GIS最初主要应用于空间分析、显示和制图。利用GIS软件的空间分析功能,分析地下水水质组分空间分布状况,绘制等值线图,直观地反映污染源与地下水水质的相关关系。国内外学者运用GIS技术和多元统计方法对表面水污染进行空间分析及源解析。Ouyang等(2006)分析了表面水水质的季节变化,并根据不同季节找到影响水质的重要因子。Zhou F等(2007)结合多元分析方法及地理信息系统(GIS),对香港东部海湾海水污染的时空分布特征进行研究,并进行了污染源识别工作,对数据进行预处理,利用聚类分析以及主成分分析减小了数据测量误差,确定了特征污染物以及各污染物主要来源。

1.3.1.6 定性及半定量方法

定性及半定量方法主要应用于 PAHs(多环芳烃)解析,迄今已发现的200 余种PAHs中有相当部分具有致癌性和致突变性(Christensen et al.,2007),PAHs主要通过大气沉降、城市污水和工业废水的排放、石油的溢漏等途径进入地表水和地下水,从而导致饮用水水源污染。PAHs 是目前水环境中致癌化学物质中最大的一类(Mnzie et al.,1992)。因此,对环芳烃来源进行解析,进行地下水污染防控也是研究的重点。

9. 地下水污染基本概念

4.4.1.1 地下水污染的含义

对于地下水污染的定义,自19世纪以来不同学者(例如德国的梅恩斯、法国的弗里德、美国的米勒等)提出了不同观点。从各种观点的阐述中可以发现它们存在两方面的主要分歧。其一是污染标准问题,有人提出了明确的标准,即以地下水中某些组分的浓度超过水质标准的现象称为地下水污染;有人只提出一个抽象的标准,即以地下水中某些组分浓度达到“不能允许的程度”或“适用性遭到破坏”等现象称为地下水污染。其二是污染原因问题,有人认为,地下水污染是人类活动引起的特有现象,天然条件下形成的某些组分的富集和贫化现象均不能称为污染;而有的人认为,不管是人为活动引起的或者是天然形成的,只要浓度超过水质标准都称为地下水污染。

事实上,在天然地质环境和人类活动影响下,地下水中的某些组分都可能出现相对富集和相对贫化,都可能产生不合格的水质。如果把这两种形成原因各异的现象统称为“地下水污染”,在科学上是不严谨的,在地下水资源保护的实用角度上,也是不可取的。因为前者是在漫长的地质历史中形成的,其出现是不可防止的;而后者是在相对较短的人类历史中形成的,只要查清其原因及途径和采取相应措施是可以防止的。因此,把上述两种原因所产生的现象从术语及含义上加以区别,从科学严谨性及实用性来说都更加可取一些。

此外,在人类活动的影响下,地下水各种组分浓度的变化绝大部分处于由小到大的量变过程,在其浓度尚未超过某一标准之前,实际污染已经产生。因此,把组分浓度超标以后才视为污染,已失去了预防的意义。当然,在判定地下水是否污染时,应该参考水质标准,但其目的并不是把它作为地下水污染的标准,而是根据它判别地下水水质是否朝着恶化的方向发展。如果朝着恶化方向发展,则视为“地下水污染”,反之则不然。

尽管人们对水污染的含义的看法有差异,但在污染造成水体质量恶化这一方面是有共识的。目前比较合理的定义可以表述为,凡是在人类活动影响下地下水水质朝着恶化方向发展的现象,统称为“地下水污染”。不管此种现象是否使水质恶化达到影响使用的程度,只要这种现象一旦发生,就应视为污染。天然地下水环境中出现不宜使用的水质现象,不应视为污染,而应称为天然水质异常。所以判定水体是否污染必须具备两个条件,第一为水质朝着恶化的方向发展;第二为这种变化是人类活动引起的(沈照理等,1993)。

4.4.1.2 地下水中的污染物

与地下水污染的定义相对应,凡是人类活动导致进入地下水,并使水质恶化的物质,无论其浓度是否达到使水质明显恶化的程度,均称为地下水污染物。由于地下水赋存于地下岩士介质中,污染物进入地下的难易程度,受到污染源状况、地下水埋藏条件、包气带含岩性和结构、污染物物理化学性质等多种因素影响。因此,尽管地表水体多与地下水存在不同程度的水力联系,但在污染物的种类上,地表水污染和地下水污染并不完全相同。

地下水污染物的种类复杂繁多,分类方式也有多种,一般可以将其大致分为三类:化学污染物、放射性污染物和生物污染物。

(1)化学污染物

化学污染物是这三类污染物中污染物种类最多、污染最为普遍的一类。可以进一步细分为无机污染物和有机污染物。

无机污染物包括各种无机盐类的污染及微量金属和非金属污染。目前,最常见的是NO3—N污染,其次是Cl-,硬度,

,TDS等。它们的特点是大面积的污染多,局部的污染少,常见于城市地区地下水中。微量金属污染物和非金属污染物相对比较少,多见于金属、非金属矿床的开采、冶炼和加工过程所在地区。

有机化合物的种类非常繁多。据Beilstein有机化学数据库,自1771~2008年已经确认的有机化合物达1030万种之多,而且每年都有新的有机化合物被不断地合成出来。由于生产、运输、存储、使用等各个环节的不当,有可能导致种类繁多的有机化合物进入地下水系统。其中很多有机化合物具有难降解、毒性大的特点,尽管它们在地下水中含量可能很低,通常以μg/L甚至ng/L计,但是它们对供水安全所造成的危害是巨大的。

由于有机污染物的种类众多,人类对地下水有机污染物的认识目前还远跟不上有机污染物产生的速度,例如美国国家环保局(2004)饮用水标准中,共列出了171种有机污染物,而其中明确有饮用水标准上限的只有61种。关于地下水中有机污染的种类划分目前还很不完善,主要是依据有机污染物的种类划分,例如卤代烃类、氯代苯类、单环芳烃类、农药类、多环芳烃类、酚类、酯类等。随着分析技术的不断发展和研究水平的不断提高,会有越来越多的有机污染物被发现和重视。

(2)放射性污染物

放射性污染物在地下水中比较少见,且种类比较少,如226Ra,238U,60Co,90Sr等,这类污染物只在局部地方发现,多与放射性物质生产和使用有关,例如核电站的核废料处置过程中产生的废水,医疗单位放射科治疗过程中产生的废水等。

(3)生物污染物

地下水中的生物污染物主要包括细菌、病毒等,它们主要由于人类和牲畜的粪便等排泄物以及死亡尸体等引起,多出现在农村卫生条件比较差的地区。

4.4.1.3 污染来源

地下水污染的来源按成因可分为人为污染源和天然污染源。人为污染源是指人类在生产、生活过程中产生的各种污染物,包括液体废弃物,例如生活污水、工业废水、地表径流等;固体废弃物,例如生活垃圾、工业垃圾;农业生产过程中的化肥农药的使用等。天然污染源是指天然存在的,但只是在人类活动的影响下才进入地下水环境的污染物,例如地下水过量开采,引起海水入侵或含水层中的咸水进入到淡水含水层而污染地下水;采矿活动的矿坑疏干使某些矿物氧化形成更易溶解的化合物而成为地下水的污染源。

地下水污染的来源按分布形式分为点污染源、线污染源和面污染源。点污染源是指面积相对较小的污染源,例如相对独立的垃圾填埋场、污水渗坑等;线污染源是指呈线状的污染源,例如长期排污河流、地下水污水管道的渗漏、铁路沿线废弃物的排放等;面污染源是指面积相对较大的污染源,例如农田大面积施用化肥和农药等。需要说明的是,按照分布形式对污染源的划分,在多数情况下是相对的概念,它和研究的尺度及范围有关。例如对垃圾填埋场研究其对周边地下水影响时,将其看成点源是不合适的,其规模大小和形态展布对地下水污染羽的分布具有明显影响。而在研究垃圾填埋场分布对区域地下水污染影响时,对于每个垃圾场来说,它们都可以看成是一些点状的污染源。

能够造成地下水污染的污染源种类繁多,图4.14 较好地展示了常见的一些污染源。据美国等一些国家的统计资料,对地下水环境质量影响最大的污染源主要包括五类,它们分别是地下储存罐、化粪池、农业活动、城市垃圾填埋、污水坑塘。

图4.14 地下水污染及常见污染源示意图

(据Zaporozec等,2000,有改动)

(1)地下储存罐

地下储存罐常年埋于地下,由于罐体的腐蚀泄漏造成地下水污染成为当前人们普遍关注的污染源之一。尤其是城市地区广泛分布的油库、加油站等。据统计,在1989~1990年间,美国约有200万个储存燃料油的地下储油罐,其中被证实发生渗漏的有9万个。据美国环保局(2009)估计,其国内现有地下储油罐的35%存在渗漏。我国目前对该类型的污染尚没有开展全面的监测,但已有研究证据表明,一些地区特别是城市的加油站储油罐确实存在渗漏问题。这类污染源向地下水中释放的污染物多数是有机溶剂,以石油产品燃料油居多,它们往往会造成地下水单环芳烃类(苯、甲苯、乙苯、二甲苯)以及C6~C16的石油烃污染,危害巨大。

(2)化粪池

广布于城市地下的各种类型化粪池以及污水管道系统的泄漏,是造成城市地区地下水污染的主要污染源之一。城市污水中主要污染组分来自于粪便排泄,它的主要污染物是BOD、COD、总悬浮物(TSS)、总氮(TN)、总磷(TP)以及病原微生物等。它们渗漏进入地下水后往往会造成地下水的硝酸盐氮、TDS、总硬度污染以及细菌污染等,城市地区地下水普遍的氮污染和盐污染多与此有关。

(3)农业活动

农业活动过程中过量施用化肥和农药,是造成农业区地下水大面积硝酸盐氮污染和农药污染的主要原因。目前,我国化肥年使用量达4124×104t,按播种面积计算,化肥使用量达400kg/hm2,远远超过发达国家为防止化肥对水体造成污染而设置的225kg/hm2的安全上限。化肥的平均利用率仅40% 左右。全国每年农药使用量超过30×104t,除30%~40%被作物吸收外,大部分进入了水体、士壤及农产品中,使全国933.3×104hm2耕地遭受了不同程度的污染。部分地区生产的蔬菜、水果中的硝酸盐、农药和重金属等有害物质残留量超标,对人们的身体健康造成了威胁。

(4)城市垃圾填埋

垃圾填埋场是城市地区不可缺少的重要组成部分,也是造成地下水污染的主要污染源之一,尤其是大量未经合理选址、设计和施工的简易填埋场。据2004年对北京市平原区垃圾填埋场调查资料,北京市平原区非正规垃圾处理场及转运站共有368处,占正在运营的垃圾处理场地总数的95%,由于简易填埋场环保措施欠缺,致使不少地区的垃圾泛滥、蚊蝇滋生、臭气飘荡,不仅影响周围环境,更加严重的是造成了对地下水的污染。垃圾填埋场由于成分复杂,其淋滤液造成的地下水污染也十分复杂,往往具有污染物浓度高、种类多、难治理的特点,严重威胁了城市地下水的安全。

(5)污水坑塘

污水坑塘往往是工业、企业生产过程中用来储存、排放或处理污水用的临时性或永久性坑塘,它们有的进行过防渗处理,有的却没有,对这类污染源的管理不善或是防护措施不够,是造成其渗漏污染地下水的主要原因。由于工业企业类型不同,所造成的污染种类也不尽相同。许多历史上的工业企业以及一些中小企业在生产过程中,由于没有排污管网,污水随意排放,或排入污水坑,或排入随意挖掘的排污沟,致使士壤和地下水受到严重污染。有些污染甚至在企业搬迁士地功能发生改变后,残留在士壤和地下水中的污染物仍可能造成极大的危害。

4.4.1.4 污染途径

按照地下水水力学特征,地下水污染途径主要包括间歇入渗型、连续入渗型、越流型和径流型四种(林年丰等,1990)。

(1)间歇入渗型

这种类型多是污染源在降水的间歇淋滤下,非连续地入渗到地下水中,例如农田、垃圾填埋场、矿山等(图4.15a,b)。

(2)连续入渗型

这种类型多为遭受污染的地表水体的长期连续入渗,造成地下水污染,例如排污渠、污水渗坑等(图4.15c,d,e)。

(3)越流型

越流型是指已污染的浅层地下水通过弱透水层、岩性“天窗”及井管等向邻近的含水层越流,造成邻近含水层污染(图4.16a,b,c,d)。

(4)径流型

径流型是指在地下水水力梯度的影响下,污染的地下水从某一地点径流到未遭受污染的地下水中,例如海水入侵、污水通过岩溶管道的渗流流向抽水井等。

(5)直接注入型

污水通过钻井灌注进入含水层中(图4.16e),或者通过岩溶漏斗、岩溶竖井进入地下水中。

图4.15 地下水污染途径示意剖面图

(据林年丰等,1990)

4.4.1.5 污染特征

地表水体和地下水由于储存、分布条件和环境上的差异,表现出不同的污染特征。地下水赋存于地下含水层中,并在其中缓慢运移,上部有一定厚度的包气带士层作为天然屏障,地面污染物在进入地下水之前,必须首先经过包气带士层。上述条件使地下水污染有如下特征。

(1)隐蔽性

由于污染是发生在地表以下的含水介质之中,因此,必须通过钻探等手段揭露地下水,进行采样分析,才可以判别地下水是否遭受污染。由于包气带对污染物的净化和屏障作用,地下水即使已遭到相当程度的污染,但往往从表观上很难识别。一般仍然表现为无色、无味,不能像地表水那样,从颜色及气味或鱼类等生物的死亡、灭绝鉴别出来。此外,即使人类饮用了受有害或有毒组分污染的地下水,其对人体的影响一般也是慢性的,不易觉察。因此,地下水污染往往具有很强的隐蔽性。

(2)长期性

地下水一旦遭到污染,往往很难依靠天然地下径流将污染物排除带走,或者依靠含水层的自净得到恢复。这主要是因为地下水的径流速度非常缓慢,即使是在水交替强烈地区,地下水径流速度相对于地表水体来说,也是非常缓慢的。而地下水的污染物则由于含水介质的吸附作用使迁移速度更加缓慢。此外,吸附或沉淀在含水介质中的污染物,很难通过抽水的方式将其从地下带出,它们往往长期存在于含水介质中,并不断缓慢地向地下水中释放转移。因此,地下水一旦遭受污染,即使在切断污染来源后,靠含水层本身的循环和自然净化,少则需要十几年、几十年,多则甚至需要上百年的时间。地下水污染具有明显的长期性特点。

(3)难恢复性

由于地下水埋藏在地下,相对于地表水的治理,防治地下水污染的难度要大很多,成本也要高很多。前已述及,多数情况下地下水中的污染物很难通过将污染地下水抽出的方式全部抽出,必须结合一些包含地下工程的就地恢复治理措施,对污染的地下水和含水层进行同时治理,这就大大增加了地下水污染的处理难度和成本。尽管目前国际上已有一些针对污染场地地下水污染的治理技术,但由于处理难度大,成本过高,即便是发达国家也是有选择地对一些污染比较严重、危害比较大的污染场地地下水进行治理。针对区域的面状污染,目前尚无有效的治理技术。因此,人们必须清楚地认识到地下水污染的难恢复性特点。

图4.16 地下水污染途径(剖面图)

(据林年丰等,1990)

10. 以污染水质的怎样恢复

一般水体修复是指陆上水和地下水,陆上水流动性大且可见,修复难度低。这里说的水体修复是指地下水修复。如果我们关注某个地方的一个地下水污染个案,而其中环境卫生风险或者预期开发成为处理方法决定性因素的话,就可以采用土壤修复的方法标准化水体修复程序。

但是,如果某个地区有几个地下水污染个案而又即将进行开发的话情况就不同了。这时候,如果有一个区域开发相关的、经过整合的污染治理方案就会比较理想,它能节约成本。如果将对各个个案的要求进行统一,形成经过整合是治理方案就可以直接根据现行的《水体保护法》运用解决此类污染个案的责任,并把责任划分给各方,并综合各方进行水体修复的方案进行地下水的处理。

建立地区全局观时,还必须对所在相关的确的地下水系统有一个整体概念,以便能够以最佳的方式来适应定性的和定量的地下水管理系统的特点、机会和局限性。这可能包括使用地区地下水计划和当地地下水计划在内的很多项目。现有地下水污染的修复策略可以根据已有的或者将要形成的地区全局观来制定。

  • 1.为那些遭受污染影响的整个地区议定一项基于该地区全局观的综合修复研究方案,包括对处理方法和水体修复方案的综合考虑。

  • 2.对于水体污染源地点的地表土层问题和存在相关的地下水污染并可能会受到未来开发影响的底层土问题需加以区分。在综合研究得出的结论时需要分别考虑底层土中的问题和地面以上出现的问题。

热点内容
影视转载限制分钟 发布:2024-08-19 09:13:14 浏览:319
韩国电影伤口上纹身找心里辅导 发布:2024-08-19 09:07:27 浏览:156
韩国电影集合3小时 发布:2024-08-19 08:36:11 浏览:783
有母乳场景的电影 发布:2024-08-19 08:32:55 浏览:451
我准备再看一场电影英语 发布:2024-08-19 08:14:08 浏览:996
奥迪a8电影叫什么三个女救人 发布:2024-08-19 07:56:14 浏览:513
邱淑芬风月片全部 发布:2024-08-19 07:53:22 浏览:341
善良妈妈的朋友李采潭 发布:2024-08-19 07:33:09 浏览:760
哪里还可以看查理九世 发布:2024-08-19 07:29:07 浏览:143
看电影需要多少帧数 发布:2024-08-19 07:23:14 浏览:121