当前位置:首页 » 城管服务 » 服务器内核

服务器内核

发布时间: 2020-12-10 18:04:51

❶ 怎么查看自己服务器什么引擎 什么内核 什么版本

uname -a
还得看你服务器用的什么操作系统。

❷ 服务器版本和Linux内核的搭配是否可更换

如果软件不经常更新,估计不影响,实际我没测试,我估计不影响。要自己多测试

❸ windows server和windows个人操作系统的内核有区别么

你好朋友;
内核都一样;
都是windows nt内核构建的;
只是面向的对象不一样罢了;
server的都是服务器用的系统;
而一般的windows是面向个人用户的;
服务器版本的windows就是在个人版的;
基础上添加了大量和网站;网络;服务器;
有关的各种组件而已;除此之外;服务器和;
个人用户使用的windows操作系统都是一样的;
不过服务器的windows操作系统同样也是和个人用户使用;
很多电脑高手就拿服务器的windows操作系统当作个人版的系统使用;
当然了;这要看你安装好后会不会优化它;你必须把它本身那些各种和网络相关的东西都关闭;
因为你是个人用户;那些东西对于你来说都是没用的;而且还要把声音服务和主题服务开启;
这样才能让服务器的操作系统变成个人用户使用的操作系统一样;
顺便再说说;windows server 2003是xp的服务器版本;
而它是在xp系统发布后的第二年发布的【xp是2001年发布的】;
而windows server 2003系统则是在2003年发布的;
而windows server 2008则是windows vista的服务器版本;
所以win2008系统也是和vista一块发布的;好像是2006年吧;你可以上网找找vista是哪年发布的;一看便知道windows server 2008系统是哪年发布的了;
而windows server 2008 r2则是和win7系统同时发布的;两者都是在;
2009年发布出来的;不过windows server 2008 r2貌似只有64位版本;
网上据说win2008 r2没有32位的版本;64位的肯定就是微软在64位win7基础上开发的了;
服务器使用的windows操作系统和个人用户使用的windows操作系统相比的区别是;
服务器的操作系统安装好后;各种和网络;网站;服务器有关的各类系统服务都是默认关闭的;
而一般个人用户所使用的windows操作系统则相反;和某些网络有关的系统服务都处在开启状态;
需要用户手动去设置系统把它关闭;服务器的操作系统比一般个人用户的操作系统安全性高

❹ 如何查看linux服务器的cpu数量,内核数,和cpu线程数

||1查看物理cpu个数

grep 'physical id' /proc/cpuinfo | sort -u
2查看核心数量
grep 'core id' /proc/cpuinfo | sort -u | wc -l

3查看线程数
grep 'processor' /proc/cpuinfo | sort -u | wc -l
英特尔最新推出了第六代酷回睿产品,采用全新一代答的架构,性能提示、功能降低、续航更加长久、无论办公学习、畅玩游戏或者观看超高清音箱播放,均得心应手,您也可以试试。

❺ 如何查看linux服务器的cpu数量,内核数,和cpu线程数

lscpu命令,查看的是cpu的统计信息.
blue@blue-pc:~$ lscpu
Architecture: i686 #cpu架构
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian #小尾序
CPU(s): 4 #总共有4核
On-line CPU(s) list: 0-3
Thread(s) per core: 1 #每个cpu核,只能支持一个线程,即不支持超线程
Core(s) per socket: 4 #每个cpu,有个核
Socket(s): 1 #总共有1一个cpu
Vendor ID: GenuineIntel #cpu产商 intel
CPU family: 6
Model: 42
Stepping: 7
CPU MHz: 1600.000
BogoMIPS: 5986.12
Virtualization: VT-x #支持cpu虚拟化技术
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 6144K

查看/proc/cpuinfo,可以知道每个cpu信息,如每个CPU的型号,主频等。
#cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 42
model name : Intel(R) Core(TM) i5-2320 CPU @ 3.00GHz
.....
上面输出的是第一个cpu部分信息,还有3个cpu信息省略了。

内存
概要查看内存情况
free -m
total used free shared buffers cached
Mem: 3926 3651 274 0 12 404
-/+ buffers/cache: 3235 691
Swap: 9536 31 9505
这里的单位是MB,总共的内存是3926MB。

查看内存详细使用
# cat /proc/meminfo
MemTotal: 4020868 kB
MemFree: 230884 kB
Buffers: 7600 kB
Cached: 454772 kB
SwapCached: 836 kB
.....

查看内存硬件信息
dmidecode -t memory
# dmidecode 2.11
SMBIOS 2.7 present.
Handle 0x0008, DMI type 16, 23 bytes
Physical Memory Array
Location: System Board Or Motherboard
....
Maximum Capacity: 32 GB
....
Handle 0x000A, DMI type 17, 34 bytes
....
Memory Device
Array Handle: 0x0008
Error Information Handle: Not Provided
Total Width: 64 bits
Data Width: 64 bits
Size: 4096 MB
.....
我的主板有4个槽位,只用了一个槽位,上面插了一条4096MB的内存。

磁盘
查看硬盘和分区分布
# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
├—sda1 8:1 0 1G 0 part /boot
├—sda2 8:2 0 9.3G 0 part [SWAP]
├—sda3 8:3 0 74.5G 0 part /
├—sda4 8:4 0 1K 0 part
├—sda5 8:5 0 111.8G 0 part /home
└—sda6 8:6 0 269.2G 0 part
显示很直观

如果要看硬盘和分区的详细信息
# fdisk -l
Disk /dev/sda: 500.1 GB, 500107862016 bytes
255 heads, 63 sectors/track, 60801 cylinders, total 976773168 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
Disk identifier: 0x00023728
Device Boot Start End Blocks Id System
/dev/sda1 * 2048 2148351 1073152 83 Linux
/dev/sda2 2148352 21680127 9765888 82 Linux swap / Solaris
/dev/sda3 21680128 177930239 78125056 83 Linux
/dev/sda4 177932286 976771071 399419393 5 Extended/dev/sda5 177932288 412305407 117186560 83 Linux
/dev/sda6 412307456 976771071 282231808 83 Linux

网卡
查看网卡硬件信息
# lspci | grep -i 'eth'
02:00.0 Ethernet controller: Realtek Semiconctor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06)

查看系统的所有网络接口
# ifconfig -a
eth0 Link encap:以太网 硬件地址 b8:97:5a:17:b3:8f
.....
lo Link encap:本地环回
.....
或者是
ip link show
1: lo: <LOOPBACK> mtu 16436 qdisc noqueue state DOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
link/ether b8:97:5a:17:b3:8f brd ff:ff:ff:ff:ff:ff

如果要查看某个网络接口的详细信息,例如eth0的详细参数和指标
# ethtool eth0
Settings for eth0:
Supported ports: [ TP MII ]
Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full #支持千兆半双工,全双工模式
Supported pause frame use: No
Supports auto-negotiation: Yes #支持自适应模式,一般都支持
Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full
Advertised pause frame use: Symmetric Receive-only
Advertised auto-negotiation: Yes #默认使用自适应模式
Link partner advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
.....
Speed: 100Mb/s #现在网卡的速度是100Mb,网卡使用自适应模式,所以推测路由是100Mb,导致网卡从支 持千兆,变成要支持百兆
Duplex: Full #全双工
.....
Link detected: yes #表示有网线连接,和路由是通的

其他
查看pci信息,即主板所有硬件槽信息。
lspci
00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09) #主板芯片
00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) #显卡
00:14.0 USB controller: Intel Corporation Panther Point USB xHCI Host Controller (rev 04) #usb控制器
00:16.0 Communication controller: Intel Corporation Panther Point MEI Controller #1 (rev 04)
00:1a.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #2 (rev 04)
00:1b.0 Audio device: Intel Corporation Panther Point High Definition Audio Controller (rev 04) #声卡
00:1c.0 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 1 (rev c4) #pci 插槽
00:1c.2 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 3 (rev c4)
00:1c.3 PCI bridge: Intel Corporation Panther Point PCI Express Root Port 4 (rev c4)
00:1d.0 USB controller: Intel Corporation Panther Point USB Enhanced Host Controller #1 (rev 04)
00:1f.0 ISA bridge: Intel Corporation Panther Point LPC Controller (rev 04)
00:1f.2 IDE interface: Intel Corporation Panther Point 4 port SATA Controller [IDE mode] (rev 04) #硬盘接口
00:1f.3 SMBus: Intel Corporation Panther Point SMBus Controller (rev 04)
00:1f.5 IDE interface: Intel Corporation Panther Point 2 port SATA Controller [IDE mode] (rev 04) #硬盘接口
02:00.0 Ethernet controller: Realtek Semiconctor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06) #网卡
03:00.0 PCI bridge: Integrated Technology Express, Inc. Device 8893 (rev 41)
如果要更详细的信息:lspci -v 或者 lspci -vv
如果要看设备树:lscpi -t

查看bios信息
# dmidecode -t bios
......
BIOS Information
Vendor: American Megatrends Inc.
Version: 4.6.5
Release Date: 04/25/2012
.......
BIOS Revision: 4.6
......
dmidecode以一种可读的方式mp出机器的DMI(Desktop Management Interface)信息。这些信息包括了硬件以及BIOS,既可以得到当前的配置,也可以得到系统支持的最大配置,比如说支持的最大内存数等。
如果要查看所有有用信息
dmidecode -q
以上是linux查看硬件信息的所有命令,可以查看CPU、硬盘、网卡、磁盘等硬件的信息。

❻ windows server和windows个人操作系统的内核有区别么

server是服务器系统是面向大众的,比如在其中放入网站,其它人可以访问。
个人版就是大部分人平时使用的。

❼ 什么是客户/服务器和微内核结构操作系统说明其优缺点

其实客户/服务器只复是微内核结构操制作系统的一种运行模式,中心与分散点的关系。内核就相当一个基本的架构核心,可以在很好的上面扩展、移植,只要核心没问题,其他都不是问题,稳定性好。缺点就是效率低,对核心的依靠性高。参考:http://ke..com/view/3219455.htm?fr=aladdin

❽ 怎样查看linux服务器的cpu核数

1、连接上相应的linux主机,进入到等待输入shell指令的linux命令行状态下。

❾ 操作系统的内核技术是什么

学院北京101407)
(版权归原作者所有)

摘要
文章介绍了作者在过击5年中在微内核技术上所做的工作.由于集成电路、计算机网络、分布式处理、多机并行处理、容错等技术的迅速发展,面向单处理机,采用内核不可抢占技术的Unix操作系统已经很难适应硬件技术的发展.为了适应以上技术的发展,Unix操作系统的内核越做越大,越做越复杂.完全丧失了其初始设计目标:系统短小精悍,容易理解.卡内基梅隆大学在美国国防部、国家科学基金的资助下,于1986年推出了一个基于微内核结构的操作系统Math.口:随后.斯坦福大学等研究机构纷纷发表了他们在这个领域所做的工作, 各个大公司纷纷推出了基于微内核结构的操作系统、D 微内核技术已成为新一代操作系统体系结构的研究热点.
基于微内核结构的操作系统和传统操作系统相}匕,具有以下特点:① 内核精巧.通常内核只由任务管理、虚存管理和进程间通信3个部分组成.传统操作系统内核中的许多部分都被移出内核.采取服务器方式实现;② 面向多处理机和分布式系统.基于微内核的操作系统,在内核中引入了多处理机调度和管理机制,并引入了细粒度并发机制——
线程,使得多个处理机可以在同一个任务中并行地执行;③ 基于客户/服务器体系结构.在微内核结构的操作系统中,任务间通信机制—— 消息机制是系统的基础,操作系统的各种功能都以服务器方式实现,向用户提供服务.用户对服务器的请求是以消息传递的方式传给服务器的.

“八五”期间,耪们在国家“八五攻关项目的支持下,对操作系统微内核技术进行了探入研究,在微内核系统调度技术、存储管理技术、计时模型、微内核系统扩展技术及微内核操作系统原型系统构造方面取得了一些研究成果.本文将介绍这些研究成果.

正文

1 微内核系统调度技术
与传统的操作系统内核相比,微内核调度系统中最突出的特征是增加了处理机和处理机集及线程的管理,并且向用户提供了灵活的手段来控翩自己的程序在处理机上的运行.这{羊,微内核系统就能很好地支持多处理机体系结构.同时,线程为用户提供了细粒度的并行处理机制,使得同一个用户任务中的不同线程可以同时在多个处理机上运行.

与进程相比,线程中所带的资源很少,因此,创建线程和撤消线程的开销就比进程小.线程也称为“轻进程.在系统调度中,线程的切换开销也比进程步,但是不同任务中的线程切换会引起任务的切换,在这种情况下,线程和进程的调度开销就变成一样了.为了优化系统效率,减步由于线程切换而弓I起的任务切换,在调度算法中加入了以下代码:
IF (所选中的线程和当前运行的城程属于同一十任务)
THEN 不做任务切换}
ELSE进行任务切换操作}
显然,这种方法在某种情况下会对系统性能有所帮助,但是这种方法在很大程度上属于一种“被动的,或者说是一种“碰运气”的方法.另外,单纯以线程为主的调度算法对用户任务有失公平性,以线程为主的调度算法是完全参照传统操作系统中的调度算法设计而成的.当线程投入运行时,系统为它分配周定大小的时间片,系统中线程按时间片轮转.这样,就产生了公平性问题:如果一个任务中有两个线程,那么,从理论上讲,它将比只用一个线程实现的任务多获得近1倍的处理机时间.在传统的进程调度系统中,一个用户可以通过创建多个进程来获得更多的处理机调度机会,但是,它是建立在增加了创建进程和进程间通讯的系统开销代价的基础上的相比之下,创建线程的开销非常小,同一任务间的线程之闭通讯开销也很小为了解决上述问题,我们提出并实现了一种将传统的任务和新的线程调度机翩相结合的方法:以任务为单位分配时间片(这样可以保证调度的公平性),在线程调度时,当一个线程不是由于任务时间片用完的原因而放弃处理机时,只要系统中没有高优先级线程,就从本任务中选取线程,从而使得由线程切换而引起的任务切换操作开销达到最小.

从目前的发展来看,用户任务的并行粒度越来越小,即用户任务中的线程越来越多,而每个线程所执行的操作会越来越步.因此,使用线程+任务的方法可以有效地减少单纯的以线程为主的系统调度所引起的系统开销.

2 微内核虚拟存储管理技术
微内核虚拟存储管理系统弓『入了存储对象(Memory Object)的概念,将物理内存看成外部存储对象的(如磁盘)高速缓存(Cache),实现了虚拟存储器写时拷贝(Copy onWrite)技术,引入了lazy evaluation技术.定义了虚拟存储器和硬件存储管理机制的接口(Pmap),实现了与机器无关的虚拟存储系统.

虚拟存储器写时拷贝算法是微内核虚拟存储管理系统的核心算法.它的弓f入使得虚拟存储器管理的效率大大提高了一步.但是,它的实现依赖于硬件存储管理机制的页面保护机制,对于一个具有写时拷贝共享属性的存储区,其页面保护被设置成写保护.多个用户可以共享的方式对它进行读操作,但是,当用户试图对这块区域进行写操作时,将产生写保护故障,页面故障管理程序将为用户进程复制物理页面.从而达到写时拷贝的目的.

在I386体系结构下,只有用户态页面允许写保护,在其他机器状态下,硬件存取机制将绕过页面保护机翩,直接对页面进行写操作.在这种状态下,写时拷贝算法将失效.而在微内核体系结构中,可能有各种状态下的服务器,如在内核态下运行的服务器.为了解决这个问题。我们引入了写时拷贝和访问时拷贝(Copy oil Reference)相结合的算法.

即在用户态上使用写时拷贝算法,在其他状态下使用访问时拷贝算法来替换写时拷贝算法,以解决写时拷周算法失效的问题.访问时拷贝算法的实现依赖于页面保护机制的映页机制.这样,在其他状态下,在设置页面保护时将写保护改成映页即可.新的方法在效率上比写时拷贝算法低,但是比完全拷贝的方法高出许多,特别是与lazy evaluation技术相配合时
效率会更高.由于微内核提供的写时拷贝算法是对用户透明的,即对于用户编写的任何状态下的服务器都将使用写时拷贝算法.因此,在I386体系结构下,在非用户态上运行的用户服务器有可能出错,新的算法解决了这个问题.

3 微内核计时模型
在传统操作系统中,为统计出每个进程的处理机时间使用量的单元.系统计时一般是放在处理机时钟中断服务程序中.系统
IF (当前盎程处于用户态)
增加当前进程的用户奋处理机时间使用量
在每个进程结构中都没有统计进程使用处理机时间
般采用如下代码段来进行用户进程的时间统计.
ELSE
增加当前进程的系统态处理机时闻使用量
由于在传统的操作系统中,操作系统提供的服务完全由操作系统内核来完成。用户通过系统调用进入内核来取得服务.因此,采用上述方法能比较准确地统计出用户所用的处理机时间.但是,这种计时方法是一种比较粗糙的计时方法.每次时钟中断时,它就将一个固定的时间片(时钟中断周期)加入披中断的进程中,而不管该进程是否完全使用了这些处理机对向.由于这种方法实现起来非常简单,系统开销很小,几乎所有的操作系绕都采用了这种方法.在新的操作系统中引入了细粒度的并行执行部件—— 线程。对于线程的计时也采用了和进程相同的方法.为了取得精确的处理机时同统计精度.一些新型操作系统弓『入了新的计时机制.如MACH 3.0中引^了基于时间戳的精确计时机制.在微内核体系结构下.传统的操作系统功能是通过服务器的方式来实现的.服务器和用户任务一样,也作为一个进程运行.当用户进程调用操作系统服务时,微内核通过消息将系统服务的参数传递给操作系统服务器,由操作系统服务器来完成用户请求,并将结果通过消息传递给用户进程.这样,如果采用传统的方法来进行进程的处理机时问统十。就会将操作系统为用户提供服务所用的处理机时间记入服务器中.而不是用户进程中.

为了解决这个问题,我们引^了委托线程的概念,建立了新的用户进程计时模型.在客户/服务器模型中,用户通过消息请求服务器的服务,服务器接收用户的消息完成用户的请求,再通过消息将结果传给用户.在这种体系结构下,可看成用户将自己的一部分工作委托给服务器完成,服务器是在为委托线程服务.当用户线程向服务器发出请求时,将用户线程标识传递给服务器,当服务器中的某个线程处理这个请求时,将用户线程标识记^服务器线程结构中的委托线程域中.在系统时钟中断服务程序中增加为委托线程计时的代码。就可将操作系统服务器为用户进程限务的时同计算到用户进程中.
IF(当前线程结构中有委托线程)
IF(当前线程赴于用户态)
增加委托线程的用户态赴理机时间使用量
ELSE
增加委托线程的系统态处理机时间使用量
在多服务器体系结构下,一个用户请求往往需要多个服务器的协同服务,如一个文件读操作,需要文件服务器的服务,如果文件服务器发现数据存放在磁盘中,它就需要请求设备服务器的眼务,设备服务器实际上是在为用户线程服务.因此,在多服务器情况下,当一个服务器向另一个服务器发出请求时,必须将自己的委托线程标识号传递给目标服务器.这样,操作系统为一个线程提供所有服务所使用的处理机时间都将计算到用户线程中击.为了完成以上功能,必须对微内核的消息传递机制进行扩充,使用户在请求服务时能将线程的标识传递给服务器,服务器在接收消息时能接收到委托线程标识.所有这些操作必须对用户透明.微内核的消息传递机制由消息发送和消息接收两部分组成.通过在这两个原语中加入以下逻辑来实现委托线程标识的发送和接收.
SEND :
IF(当前线程结构中有委托线程标识)
将委托线程标识传递出去
ELSE
将当前线程的标识传递出击
RECEIVE:
IF(当前线程是服务器)
将委托线程号放凡服务器线程结构
在发送原语中,可将委托线程标识从一个服务器传递到另一个服务器.在接收逻辑中,通过增加服务器标识的判断可以避免非服务器线程之间的偶发通讯而导致的用户线程的计时错误.

4 结论
微内核技术是当今操作系统发展的最新成果.在体系结构方面,它采用了面向对象技术来描述操作系统内核对象,提出并实现了基于客户服务器体系结构的操作系统.在算法方面,提出了许多高教新颖的算法,如线程及处理机调度算法、写时拷贝算法、与硬件无关的存储管理算法以及精确计时算法等等.在国产微内核操作系统COSIX2.0的研制过程中,通过对国外微内核技术的消化和研究,提出并实现了一些新的算法和模型,改进了系统的性能,提高了系统的可靠性,做到了有所继承,有所刨新目前,我们正在进行基于微内核的JAVA虚拟机,支持服务质量(Quality of Services)的调度系统微内核热重启(Hot Restart)技术的研究.以上内容是我们一部分研究工作的总结.

❿ Linux服务器 内核占用cpu过高

我也遇到了这来样的问题自。
4颗96核的CPU,随便一个进程一运行 sys 的使用率就上涨,us 使用率正常。
系统为centos6.5时运行正常,centos7.6时 sys 上涨导致负载飚升。
初步判断系统内核兼容性问题,不过没有测试

热点内容
影视转载限制分钟 发布:2024-08-19 09:13:14 浏览:319
韩国电影伤口上纹身找心里辅导 发布:2024-08-19 09:07:27 浏览:156
韩国电影集合3小时 发布:2024-08-19 08:36:11 浏览:783
有母乳场景的电影 发布:2024-08-19 08:32:55 浏览:451
我准备再看一场电影英语 发布:2024-08-19 08:14:08 浏览:996
奥迪a8电影叫什么三个女救人 发布:2024-08-19 07:56:14 浏览:513
邱淑芬风月片全部 发布:2024-08-19 07:53:22 浏览:341
善良妈妈的朋友李采潭 发布:2024-08-19 07:33:09 浏览:760
哪里还可以看查理九世 发布:2024-08-19 07:29:07 浏览:143
看电影需要多少帧数 发布:2024-08-19 07:23:14 浏览:121