当前位置:首页 » 城管服务 » 无监督聚类

无监督聚类

发布时间: 2020-11-22 21:08:55

Ⅰ 非监督学习对样本进行聚类的常见方法有哪几种

有简单聚类方法、层次聚类法以及动态聚类法

Ⅱ 非监督模式识别的经典方法是聚类,聚类的三个要点是什么

第一,聚类分析是一种无监督学习的方法。
第二,聚类的对象是没有分类标记的训练样本。
第三,聚类的目的是将数据集划分为若干个互不相交的子集。

Ⅲ 监督分类和非监督分类的研究现状

非监督分类是指人们事先对分类过程不施加任何的先验知识,而仅凭数据(遥感影像地物的光谱特征的分布规律),即自然聚类的特性,进行“盲目”的分类;其分类的结果只是对不同类别达到了区分,但并不能确定类别的属性,亦即:非监督分类只能把样本区分为若干类别,而不能给出样本的描述;其类别的属性是通过分类结束后目视判读或实地调查确定的。非监督分类也称聚类分析。一般的聚类算法是先选择若干个模式点作为聚类的中心。每一中心代表一个类别,按照某种相似性度量方法(如最小距离方法)将各模式归于各聚类中心所代表的类别,形成初始分类。然后由聚类准则判断初始分类是否合理,如果不合理就修改分类,如此反复迭代运算,直到合理为止。与监督法的先学习后分类不同,非监督法是边学习边分类,通过学习找到相同的类别,然后将该类与其它类区分开,但是非监督法与监督法都是以图像的灰度为基础。通过统计计算一些特征参数,如均值,协方差等进行分类的。所以也有一些共性。

Ⅳ 我想知道STM32系列单片机能做简单的人工智能吗,比如无监督聚类,人工神经网络。

我觉得要看用途,如果要做算法对比何苦去做单片机移植啊……搭建常规环境不是更同意一些吗?文档多,同性伙伴多啊……

Ⅳ 什么是监督分类和非监督分类

监督分类又称训练场地法、训练分类法,是以建立统计识别函数为理论基础、依据典型样本训练方法进行分类的技术,即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类。

非监督分类是以不同影像地物在特征空间中类别特征的差别为依据的一种无先验类别标准的图像分类,是以集群为理论基础,通过计算机对图像进行集聚统计分析的方法。根据待分类样本特征参数的统计特征,建立决策规则来进行分类。

(5)无监督聚类扩展阅读

监督分类的主要优点如下:

(1)可根据应用目的和区域,充分利用先验知识,有选择地决定分类类别,避免出现不必要的类别;

(2)可控制训练样本的选择;

(3)可通过反复检验训练样本,来提高分类精度,避免分类严重错误;

(4)避免了非监督分类中对光谱集群组的重新归类。

缺点如下:

(1)其分类系统的确定、训练样本的选择,均人为主观因素较强,分析者定义的类别有可能并不是图像中存在的自然类别,导致各类别间可能出现重叠;分析者所选择的训练样本也可能并不代表图像中的真实情形;

(2)由于图像中同一类别的光谱差异,造成训练样本没有很好的代表性;

(3)训练样本的选取和评估需花费较多的人力、时间;

(4)只能识别训练样本中所定义的类别,若某类别由于训练者不知道或者其数量太少未被定义,则监督分类不能识别。

Ⅵ envi中监督分类和非监督分类有什么区别各是怎么定义的

监督分类是需要学习训练的分类方法,如最大似然分类,人工神经网络分类,即是需要事先为每类地物在遥感图像上采集样本数据,之后通过学习训练过程才来分类;非监督分类不需要人工采集地物样本点数据,多是通过聚类的方法来自动分类,主要有isodata,k均值等.总体来说,监督分类的效果要优于非监督分类.

Ⅶ 无监督学习比如简单的聚类分析真的是“学习”吗

聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里。分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchicalclustering)方法。这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。(3)多维等级分析(,MDS)是一种在二维Euclidean“距离”中显示实验样本相关的大约程度。(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。聚类方法有两个显著的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据。几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类。但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同。结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息。为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式。对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界)。最终,将需要经验可信度通过序列比较来指导聚类解释。第二个局限由线性相关产生。上述的所有聚类方法分析的仅是简单的一对一的关系。因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点。从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。就数据挖掘功能而言,聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他数据挖掘任务(如分类、关联规则)的预处理步骤。数据挖掘领域主要研究面向大型数据库、数据仓库的高效实用的聚类分析算法。聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。这些算法可以被分为划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。1划分方法(PAM:PArtitioningmethod)首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:k-means,k-medoids,CLARA(ClusteringLARgeApplication),CLARANS().FCM2层次方法(hierarchicalmethod)创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:第一个是;BIRCH()方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。第二个是CURE()方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。第三个是ROCK方法,它利用聚类间的连接进行聚类合并。最后一个CHEMALOEN,它则是在层次聚类时构造动态模型。3基于密度方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:DBSCAN(Densit-):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。OPTICS():并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。4基于网格方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。STING(STatisticalINformationGrid)就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。CLIQUE(ClusteringInQUEst)和Wave-Cluster则是一个将基于网格与基于密度相结合的方法。5基于模型方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.

Ⅷ 为什么说聚类分析是一种无监督的学习方法

聚类分析:对样品或指标进行分类的一种分析方法,依据样本和指标已知特性进行分类。本节主要介绍层次聚类分析,一共包括3个部分,每个部分包括一个具体实战例子。

1、常规聚类过程:

一、首先用dist()函数计算变量间距离
dist.r = dist(data, method=" ")
其中method包括6种方法,表示不同的距离测度:"euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"。相应的意义自行查找。

二、再用hclust()进行聚类
hc.r = hclust(dist.r, method = “ ”)
其中method包括7种方法,表示聚类的方法:"ward", "single", "complete","average", "mcquitty", "median" or "centroid"。相应的意义自行查找。

三、画图
plot(hc.r, hang = -1,labels=NULL) 或者plot(hc.r, hang = 0.1,labels=F)
hang 等于数值,表示标签与末端树杈之间的距离,
若是负数,则表示末端树杈长度是0,即标签对齐。
labels 表示标签,默认是NULL,表示变量原有名称。labels=F :表示不显示标签。

Ⅸ 请帮忙寻找:能实际运行并且有运行结果的,基于无监督聚类的关键帧提取算法源码

顶你,希望找到答案

Ⅹ 无监督聚类问题中,如何决定簇的最优数量

<pre t="code" l="python"># -*- coding: utf-8 -*-
from sklearn.cluster import KMeans
from sklearn.externals import joblib
import numpy

final = open('c:/test/final.dat' , 'r')

data = [line.strip().split('\t') for line in final]
feature = [[float(x) for x in row[3:]] for row in data]

#调用kmeans类
clf = KMeans(n_clusters=9)
s = clf.fit(feature)
print s

#9个中心
print clf.cluster_centers_

#每个样本所属的簇
print clf.labels_

#用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
print clf.inertia_

#进行预测
print clf.predict(feature)

#保存模型
joblib.mp(clf , 'c:/km.pkl')

#载入保存的模型
clf = joblib.load('c:/km.pkl')

'''
#用来评估簇的个数是否合适,距离越小说明簇分的越好,选取临界点的簇个数
for i in range(5,30,1):
clf = KMeans(n_clusters=i)
s = clf.fit(feature)
print i , clf.inertia_
'''

热点内容
影视转载限制分钟 发布:2024-08-19 09:13:14 浏览:319
韩国电影伤口上纹身找心里辅导 发布:2024-08-19 09:07:27 浏览:156
韩国电影集合3小时 发布:2024-08-19 08:36:11 浏览:783
有母乳场景的电影 发布:2024-08-19 08:32:55 浏览:451
我准备再看一场电影英语 发布:2024-08-19 08:14:08 浏览:996
奥迪a8电影叫什么三个女救人 发布:2024-08-19 07:56:14 浏览:513
邱淑芬风月片全部 发布:2024-08-19 07:53:22 浏览:341
善良妈妈的朋友李采潭 发布:2024-08-19 07:33:09 浏览:760
哪里还可以看查理九世 发布:2024-08-19 07:29:07 浏览:143
看电影需要多少帧数 发布:2024-08-19 07:23:14 浏览:121