最新半监督
1. 半监督学习的半监督学习的分类
SSL按照统计学习理论的角度包括直推(Transctive)SSL和归纳(Inctive)SSL两类模式。直推SSL只处理样本空间内给定的训练数据,利用训练数据中有类标签的样本和无类标签的样例进行训练,预测训练数据中无类标签的样例的类标签;归纳SSL处理整个样本空间中所有给定和未知的样例,同时利用训练数据中有类标签的样本和无类标签的样例,以及未知的测试样例一起进行训练,不仅预测训练数据中无类标签的样例的类标签,更主要的是预测未知的测试样例的类标签。
从不同的学习场景看,SSL可分为四大类:
1)半监督分类(Semi-Supervised Classification):在无类标签的样例的帮助下训练有类标签的样本,获得比只用有类标签的样本训练得到的分类器性能更优的分类器,弥补有类标签的样本不足的缺点,其中类标签 取有限离散值 ;
具体的有:
自训练(Self-Training)、直推学习(Transctive Learning)、生成式模型(Generative Model)、基于差异的方法(Disagreement-Based Methods)、生成式方法(Generative Methods)、判别式方法(DiscriminativeMethods)和基于图的方法(Graph-Based Methods)等,
2)半监督回归(Semi-Supervised Regression):在无输出的输入的帮助下训练有输出的输入,获得比只用有输出的输入训练得到的回归器性能更好的回归器,其中输出 取连续值 ;
具体的主要的半监督回归方法有基于差异的方法和基于流形学习的方法。
3)半监督聚类(Semi-Supervised Clustering):在有类标签的样本的信息帮助下获得比只用无类标签的样例得到的结果更好的簇,提高聚类方法的精度;
主要的半监督聚类方法有基于距离的方法和大间隔方法。
4)半监督降维(Semi-Supervised Dimensionality Rection):在有类标签的样本的信息帮助下找到高维输入数据的低维结构,同时保持原始高维数据和成对约束(Pair-Wise Constraints)的结构不变,即在高维空间中满足正约束(Must-Link Constraints)的样例在低维空间中相距很近,在高维空间中满足负约束(Cannot-Link Constraints)的样例在低维空间中距离很远。
主要的半监督降维方法有基于类标签的方法、基于成对约束的方法及其它方法等。 无噪声干扰的样本数据是当前大部分半监督学习方法使用的数据,而在实际生活中用到的数据却大部分不是无干扰的,通常都比较难以得到纯样本数据。上面谈论的三个基本假设显然是有效的,不过过于简约,这些假设没能把噪声干扰下未标记样本数据分布的不确定性以及它的复杂性充分的考虑全。
2. 半监督学习的简介
在机器学习领域中,传统的学习方法有两种:监督学习和无监督学习。半监督学习(Semi-supervised Learning)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。它主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。半监督学习对于减少标注代价,提高学习机器性能具有非常重大的实际意义。
3. python 有可以做半监督回归的机器学习库吗
python 有很多库都可以做半监督回归的机器学习,最常用的如下:
Scikit-learn
Tensorflow
Caffe
Shogun
4. 半监督学习和无监督学习的区别
半监督现在还算比较热门的吧。相对于监督,它需要的训练数据少;相对于无监督,效果更好。而且半监督似乎也很符合人的学习方式。
5. 适合于多分类的半监督学习算法有哪些
朴素贝叶斯(Naive Bayes, NB)
超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型(如Logistic回归)收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。如果你想做类似半监督学习,或者是既要模型简单又要性能好,NB值得尝试。
Logistic回归(Logistic Regression, LR)
LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机(SVM)不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型(使用在线梯度下降法)。如果你想要一些概率信息(如,为了更容易的调整分类阈值,得到分类的不确定性,得到置信区间),或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
决策树(Decision Tree, DT)
DT容易理解与解释(对某些人而言——不确定我是否也在他们其中)。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题(例如,DT可以轻松的处理这种情况:属于A类的样本的特征x取值往往非常小或者非常大,而属于B类的样本的特征x取值在中间范围)。DT的主要缺点是容易过拟合,这也正是随机森林(Random Forest, RF)(或者Boosted树)等集成学习算法被提出来的原因。此外,RF在很多分类问题中经常表现得最好(我个人相信一般比SVM稍好),且速度快可扩展,也不像SVM那样需要调整大量的参数,所以最近RF是一个非常流行的算法。
支持向量机(Support Vector Machine, SVM)
很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。由于较大的内存需求和繁琐的调参,我认为RF已经开始威胁其地位了。
回到LR与DT的问题(我更倾向是LR与RF的问题),做个简单的总结:两种方法都很快且可扩展。在正确率方面,RF比LR更优。但是LR可以在线更新且提供有用的概率信息。鉴于你在Square(不确定推断科学家是什么,应该不是有趣的化身),可能从事欺诈检测:如果你想快速的调整阈值来改变假阳性率与假阴性率,分类结果中包含概率信息将很有帮助。无论你选择什么算法,如果你的各类样本数量是不均衡的(在欺诈检测中经常发生),你需要重新采样各类数据或者调整你的误差度量方法来使各类更均衡。
6. 国内研究半监督学习算法的牛人有哪些
南大周志华
7. 半监督学习的起源和发展历程
SSL的研究历史可以追溯到20世纪70年代,这一时期,出现了自训练(Self-Training)、直推学习(Transctive Learning)、生成式模型(Generative Model)等学习方法。
90年代,新的理论的出现,以及自然语言处理、文本分类和计算机视觉中的新应用的发展,促进了SSL的发展,出现了协同训练(Co-Training)和转导支持向量机(Transctive Support Vector Machine,TSVM)等新方法。Merz等人在1992年提出了SSL这个术语,并首次将SSL用于分类问题。接着Shahshahani和Landgrebe展开了对SSL的研究。协同训练方法由Blum和Mitchell提出,基于不同的视图训练出两个不同的学习机,提高了训练样本的置信度。Vapnik和Sterin提出了TSVM,用于估计类标签的线性预测函数。为了求解TSVM,Joachims提出了SVM方法,Bie和Cristianini将TSVM放松为半定规划问题从而进行求解。许多研究学者广泛研究将期望最大算法(Expectation Maximum,EM)与高斯混合模型(Gaussian Mixture Model,GMM)相结合的生成式SSL方法。Blum等人提出了最小割法(Mincut),首次将图论应用于解决SSL问题。Zhu等人提出的调和函数法(Harmonic Function)将预测函数从离散形式扩展到连续形式。由Belkin等人提出的流形正则化法(Manifold Regularization)将流形学习的思想用于SSL场景。Klein等人提出首个用于聚类的半监督距离度量学习方法,学习一种距离度量。
8. 我知道有监督学习,半监督学习,那么什么是弱监督学习
三种弱监督类型:不完全监督,即只有一部分样本有标签;不确切监督,即训练样本只有粗粒度的标签;以及不准确监督,即给定的标签不一定总是真值。
9. 自我学习,监督学习,半监督学习和迁移学习的区别
自我学习和半监督学习一样,当前手头上只有少量训练样本,但是周围手头上还有版大量无标注样本。举一权个经典的例子,分离大象和犀牛。对于监督学习来说,我们手头有大量大象的样本和犀牛的样本,接下来训练分类器,进行分类,大家都知道的。对于迁移学习,则是指我们手头上有大量羊的样本和马的样本(已标记),少量的大象和犀牛的样本,接下来就要从羊和马的样本中选出有效的样本分别加入到大象和犀牛的标记样本中,然后再用监督学习的方法训练分类器。而非监督学习,则是手上仅有少量大象和犀牛的已标记样本,另外有一堆大象和犀牛的没有标记的数据(注意它们中要么是大象要么是犀牛,没有其他物种)。半监督学习就是利用这些样本训练分类器,实现分类。而自我学习,同样是手上仅有少量大象和犀牛的已标记样本,另外有一大堆自然图像。所谓自然图像,就是有大象和犀牛的图片,还有各种其他物种的图片。自我学习比半监督学习更适合实际场景—–哪有一堆只有大象和犀牛的图片给你呢?而自然图像的来源更加广泛,可以从互联网上随便下载。 转载网络。
10. 半监督学习的介绍
半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相内结合的一种容学习方法。它主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。主要分为半监督分类,半监督回归,半监督聚类和半监督降维算法。