监督学习方法
㈠ 现在有没有直接对低层进行有监督学习的深度学习方法
听他人说的:无监督与监督学习的区别在于一个无教学值,一个有教学值。但是内,个人认为他们的区别容在于无监督学习一般是采用聚簇等算法来分类不同样本。而监督学习一般是利用教学值与实际输出值产生的误差,进行误差反向传播修改权值来完成网络修正的。但是无监督学习没有反向传播修改权值操作,当然这里只是说的是特征提取阶段。
㈡ 什么是无监督学习
监督学习
利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。正如人们通过已知病例学习诊断技术那样,计算机要通过学习才能具有识别各种事物和现象的能力。用来进行学习的材料就是与被识别对象属于同类的有限数量样本。监督学习中在给予计算机学习样本的同时,还告诉计算各个样本所属的类别。若所给的学习样本不带有类别信息,就是无监督学习。任何一种学习都有一定的目的,对于模式识别来说,就是要通过有限数量样本的学习,使分类器在对无限多个模式进行分类时所产生的错误概率最小。
不同设计方法的分类器有不同的学习算法。对于贝叶斯分类器来说,就是用学习样本估计特征向量的类条件概率密度函数。在已知类条件概率密度函数形式的条件下,用给定的独立和随机获取的样本集,根据最大似然法或贝叶斯学习估计出类条件概率密度函数的参数。例如,假定模式的特征向量服从正态分布,样本的平均特征向量和样本协方差矩阵就是正态分布的均值向量和协方差矩阵的最大似然估计。在类条件概率密度函数的形式未知的情况下,有各种非参数方法,用学习样本对类条件概率密度函数进行估计。在分类决策规则用判别函数表示的一般情况下,可以确定一个学习目标,例如使分类器对所给样本进行分类的结果尽可能与“教师”所给的类别一致,然后用迭代优化算法求取判别函数中的参数值。
在无监督学习的情况下,用全部学习样本可以估计混合概率密度函数,若认为每一模式类的概率密度函数只有一个极大值,则可以根据混合概率密度函数的形状求出用来把各类分开的分界面。
㈢ 监督学习的实例分析:
正如人们通过已知病例学习诊断技术那样,计算机要通过学习才能具有识别各种事物和现象的能力。用来进行学习的材料就是与被识别对象属于同类的有限数量样本。监督学习中在给予计算机学习样本的同时,还告诉计算各个样本所属的类别。若所给的学习样本不带有类别信息,就是无监督学习。任何一种学习都有一定的目的,对于模式识别来说,就是要通过有限数量样本的学习,使分类器在对无限多个模式进行分类时所产生的错误概率最小。
不同设计方法的分类器有不同的学习算法。对于贝叶斯分类器来说,就是用学习样本估计特征向量的类条件概率密度函数。在已知类条件概率密度函数形式的条件下,用给定的独立和随机获取的样本集,根据最大似然法或贝叶斯学习估计出类条件概率密度函数的参数。例如,假定模式的特征向量服从正态分布,样本的平均特征向量和样本协方差矩阵就是正态分布的均值向量和协方差矩阵的最大似然估计。在类条件概率密度函数的形式未知的情况下,有各种非参数方法,用学习样本对类条件概率密度函数进行估计。在分类决策规则用判别函数表示的一般情况下,可以确定一个学习目标,例如使分类器对所给样本进行分类的结果尽可能与“教师”所给的类别一致,然后用迭代优化算法求取判别函数中的参数值。
在无监督学习的情况下,用全部学习样本可以估计混合概率密度函数,若认为每一模式类的概率密度函数只有一个极大值,则可以根据混合概率密度函数的形状求出用来把各类分开的分界面。
监督学习方法是目前研究较为广泛的一种机器学习方法,例如神经网络传播算法、决策树学习算法等已在许多领域中得到成功的应用,但是,监督学习需要给出不同环境状态下的期望输出(即导师信号),完成的是与环境没有交互的记忆和知识重组的功能,因此限制了该方法在复杂的优化控制问题中的应用。
㈣ 监督学习和无监督学习的区别
机器学习的常用方法,主要分为有监督学习(supervised learning)和无监督学习(unsupervised learning)。
监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。在人对事物的认识中,我们从孩子开始就被大人们教授这是鸟啊、那是猪啊、那是房子啊,等等。我们所见到的景物就是输入数据,而大人们对这些景物的判断结果(是房子还是鸟啊)就是相应的输出。当我们见识多了以后,脑子里就慢慢地得到了一些泛化的模型,这就是训练得到的那个(或者那些)函数,从而不需要大人在旁边指点的时候,我们也能分辨的出来哪些是房子,哪些是鸟。监督学习里典型的例子就是KNN、SVM。
无监督学习(也有人叫非监督学习,反正都差不多)则是另一种研究的比较多的学习方法,它与监督学习的不同之处,在于我们事先没有任何训练样本,而需要直接对数据进行建模。这听起来似乎有点不可思议,但是在我们自身认识世界的过程中很多处都用到了无监督学习。比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能把它们分成不同的派别(比如哪些更朦胧一点,哪些更写实一些,即使我们不知道什么叫做朦胧派,什么叫做写实派,但是至少我们能把他们分为两个类)。无监督学习里典型的例子就是聚类了。聚类的目的在于把相似的东西聚在一起,而我们并不关心这一类是什么。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了。
㈤ 机器学习 一 监督学习和无监督学习的区别
1、机器学习按照方法来分类,可以分成四类,分别是:监督学习、无监督学习、半监督学习和强化学习。
2、监督学习针对有标签数据集,它通过学习出一个模型(其实就是一个函数)来拟合数据,按照模型(函数)的输出结果是否离散又可以分为两类,分别是:(1)输出结果为离散值,则为分类问题(常见的分类算法:KNN、贝叶斯分类器、决策树、SVM、神经网络、GBDT、随机森林等);(2)输出结果为连续值,则为回归问题(有线性回归和逻辑回归两种)。
3、无监督学习针对没有标签的数据集,它将样本按照距离划分成类簇,使得类内相似性最大,类间相似性最小。通过观察聚类结果,我们可以得到数据集的分布情况,为进一步分析提供支撑。常见的聚类算法有K-means、高斯混合模型和LDA。
㈥ 无监督学习比如简单的聚类分析真的是“学习”吗
聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里。分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchicalclustering)方法。这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。(3)多维等级分析(,MDS)是一种在二维Euclidean“距离”中显示实验样本相关的大约程度。(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。聚类方法有两个显著的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据。几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类。但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同。结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息。为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式。对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界)。最终,将需要经验可信度通过序列比较来指导聚类解释。第二个局限由线性相关产生。上述的所有聚类方法分析的仅是简单的一对一的关系。因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点。从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。就数据挖掘功能而言,聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他数据挖掘任务(如分类、关联规则)的预处理步骤。数据挖掘领域主要研究面向大型数据库、数据仓库的高效实用的聚类分析算法。聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。这些算法可以被分为划分方法、层次方法、基于密度方法、基于网格方法和基于模型方法。1划分方法(PAM:PArtitioningmethod)首先创建k个划分,k为要创建的划分个数;然后利用一个循环定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:k-means,k-medoids,CLARA(ClusteringLARgeApplication),CLARANS().FCM2层次方法(hierarchicalmethod)创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:第一个是;BIRCH()方法,它首先利用树的结构对对象集进行划分;然后再利用其它聚类方法对这些聚类进行优化。第二个是CURE()方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定量(向聚类中心)进行收缩。第三个是ROCK方法,它利用聚类间的连接进行聚类合并。最后一个CHEMALOEN,它则是在层次聚类时构造动态模型。3基于密度方法,根据密度完成对象的聚类。它根据对象周围的密度(如DBSCAN)不断增长聚类。典型的基于密度方法包括:DBSCAN(Densit-):该算法通过不断生长足够高密度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。OPTICS():并不明确产生一个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。4基于网格方法,首先将对象空间划分为有限个单元以构成网格结构;然后利用网格结构完成聚类。STING(STatisticalINformationGrid)就是一个利用网格单元保存的统计信息进行基于网格聚类的方法。CLIQUE(ClusteringInQUEst)和Wave-Cluster则是一个将基于网格与基于密度相结合的方法。5基于模型方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的基于模型方法包括:统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采用符号量(属性-值)对来加以描述的。采用分类树的形式来创建一个层次聚类。CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。因此它们都不适合对大数据库进行聚类处理.
㈦ 非监督学习有哪些
无监督学习(Unsupervised Learning)是和监督学习相对的另一种主流机器学习的方法,我们知道监督学习解决的是“分类”和“回归”问题,而无监督学习解决的主要是“聚类(Clustering)”问题。
从无监督学习说起:算法模型有哪几种?
监督学习通过对数据进行标注,来让机器学习到,比如:小曹多重多高就是胖纸,或者用身高体重等数据,来计算得到小曹的BMI系数;而无监督学习则没有任何的数据标注(超过多高算高,超过多重算胖),只有数据本身。
比如:有一大群人,知道他们的身高体重,但是我们不告诉机器“胖”和“瘦”的评判标准,聚类就是让机器根据数据间的相似度,把这些人分成几个类别。
那它是怎么实现的呢?怎么才能判断哪些数据属于一类呢?
这是几种常见的主要用于无监督学习的算法。
K均值(K-Means)算法;
自编码器(Auto-Encoder);
主成分分析(Principal Component Analysis)。
K均值算法
K均值算法有这么几步:
从无监督学习说起:算法模型有哪几种?
随机的选取K个中心点,代表K个类别;
计算N个样本点和K个中心点之间的欧氏距离;
将每个样本点划分到最近的(欧氏距离最小的)中心点类别中——迭代1;
计算每个类别中样本点的均值,得到K个均值,将K个均值作为新的中心点——迭代2;
重复234;
得到收敛后的K个中心点(中心点不再变化)——迭代4。
上面提到的欧氏距离(Euclidean Distance),又叫欧几里得距离,表示欧几里得空间中两点间的距离。我们初中学过的坐标系,就是二维的欧几里得空间,欧氏距离就是两点间的距离,三维同理,多维空间的计算方式和三维二维相同。
㈧ 自我学习,监督学习,半监督学习和迁移学习的区别
自我学习和半监督学习一样,当前手头上只有少量训练样本,但是周围手头上还有版大量无标注样本。举一权个经典的例子,分离大象和犀牛。对于监督学习来说,我们手头有大量大象的样本和犀牛的样本,接下来训练分类器,进行分类,大家都知道的。对于迁移学习,则是指我们手头上有大量羊的样本和马的样本(已标记),少量的大象和犀牛的样本,接下来就要从羊和马的样本中选出有效的样本分别加入到大象和犀牛的标记样本中,然后再用监督学习的方法训练分类器。而非监督学习,则是手上仅有少量大象和犀牛的已标记样本,另外有一堆大象和犀牛的没有标记的数据(注意它们中要么是大象要么是犀牛,没有其他物种)。半监督学习就是利用这些样本训练分类器,实现分类。而自我学习,同样是手上仅有少量大象和犀牛的已标记样本,另外有一大堆自然图像。所谓自然图像,就是有大象和犀牛的图片,还有各种其他物种的图片。自我学习比半监督学习更适合实际场景—–哪有一堆只有大象和犀牛的图片给你呢?而自然图像的来源更加广泛,可以从互联网上随便下载。 转载网络。
㈨ 监督学习的神经网络是啥意思!
用样本去训练一个BP网络,然后用新的样本作为输入,再通过这个已经训练好的BP网络,得到的数据就是仿真的结果,这就是BP网络仿真。我们训练一个BP网络就好像是在训练一个神经系统,然后用这个已经具备分析能力的神经系统去分析事情,这就是为什么要仿真,说到底就是为了用。仿真的作用你可以从BP神经网络的用途上去看,例如很经典的可以用来做分类器等。你用不同类别的样本(输入+对应的期望输出)作为训练,然后给出一个新的输入,BP网就能给你这个所属的类别。