數據治理技術
❶ 大數據治理需要具備哪些能力和關鍵技術
正經培訓,班導師肯定知道;
BAT內部程序員肯定知道;
還有,反正不是我。
❷ 數據治理包括哪些方面
數據治理是指從使用零散數據變為使用統一主數據、從具有很少或沒有組織和流程治理到企業范圍內的綜合數據治理、從嘗試處理主數據混亂狀況到主數據井井有條的一個過程。
數據治理的全過程
數據治理其實是一種體系,是一個關注於信息系統執行層面的體系,這一體系的目的是整合IT與業務部門的知識和意見,通過一個類似於監督委員會或項目小組的虛擬組織對企業的信息化建設進行全方位的監管,這一組織的基礎是企業高層的授權和業務部門與IT部門的建設性合作。從范圍來講,數據治理涵蓋了從前端事務處理系統、後端業務資料庫到終端的數據分析,從源頭到終端再回到源頭形成一個閉環負反饋系統(控制理論中趨穩的系統)。從目的來講,數據治理就是要對數據的獲取、處理、使用進行監管(監管就是我們在執行層面對信息系統的負反饋),而監管的職能主要通過以下五個方面的執行力來保證——發現、監督、控制、溝通、整合
❸ 如何成功實現數據治理
隨著信息技術的飛速發展,各領域的數據量都在爆發式增長,尤其在雲計算、物聯網、移動互聯網等it技術得到廣泛應用之後,數據的增長實現了從量變到質變的轉型,大數據如浪潮般席捲而來,人類社會進入大數據時代。大數據不僅僅只是一次顛覆性的技術革命,更是一場思維方式、行為模式與治理理念的全方位變革,尤其在治理領域,大數據帶來了巨大的變革潛力和創新空間。在「全面深化改革,推進國家治理體系和治理能力現代化」的時代背景下,應充分重視大數據在治理中的重要價值,牢牢抓住大數據為治理提供的創新機遇,切實提高各級部門的治理能力。
一、大數據為治理理念轉型帶來新機遇
治理理念的轉型是提升治理能力的前提,理念的轉型需要新文化、新思維的融入,大數據所蘊含的數據文化與數據思維恰好可以為治理理念轉型提供突破口,基於大數據探索治理的多元、多層、多角度特徵,最終實現以為主體的管制理念向以協同共治、公共服務為導向的治理理念的轉型。在大數據時代,治理的依據不再是個人經驗和長官意志,而是實實在在的數據,在過去深入群眾、實地調研考察的基礎上,系統採集的客觀數據和實證分析的科學結果將成為最為重要的決策依據。「尊重事實、推崇理性、強調精確」的特徵和「用數據說話、用數據決策、用數據管理、用數據創新」的理念將成為治理理念轉型的核心要義。
二、大數據為治理模式創新帶來新機遇
大數據通過把數學演算法運用於海量數據,從數據中尋找相關關系,通過這種相關性預測事情發生的可能性,這是大數據方法論的核心思想。此外,依託於大數據技術和,通過、眾包等靈活的組織方式,可以推動治理的組織架構從科層、分割、封閉向開放、協同、合作轉型,因此把大數據的方法和手段引入到治理領域,是實現治理模式創新的有效路徑。基於上述方法論,大數據為治理模式創新帶來的新機遇主要包括:從粗放式管理到精細化治理、從單兵作戰型管理到協作共享型治理、從被動響應型管理到主動預見型治理、從電子政務管理到2.0治理、從風險隱蔽型管理到風險防範型治理,最終實現全面數據驅動的治理模式創新。
三、大數據為決策科學化帶來新機遇
隨著公共事務的日益復雜,僅憑個人感知已經很難全面了解所有正在發生的事情並做出正確判斷,部門想要提高決策的科學性,就需要把大數據思維與技術運用到治理與決策中,依靠大規模數據的收集來直觀呈現經濟社會運行規律,通過相應的數據挖掘來輔助部門進行科學決策。大數據為決策科學化帶來的機遇主要體現在兩個方面:首先,在決策的制定階段,大數據背景下,決策不再是個別領導幹部「拍腦袋」做出的,而是通過「用數據說話」,讓聽得見炮火的人(數據)做出決策,這樣的決策是在對客觀數據進行科學分析、充分了解客觀現實的基礎上做出的,這樣大大提高了決策的精準性、適用性和科學化水平;其次,在決策實施效果的跟蹤反饋階段,通過物聯網和社交網路的普及,大量的客觀數據能夠快速匯集給決策者,通過這些數據對決策的實施過程和效果進行實時監控,能夠更全面地掌握決策的實施效果和下一步的改進方向。
四、大數據為服務效能提升帶來新機遇
提升服務效能是治理能力提升的重要支撐,也是大數據背景下服務型建設的關鍵所在,在治理的范疇下,提升服務效能主要包括部門行政審批的效率提升和公共服務產品的質量提高兩個方面。在提升行政審批效率方面,大數據可以打通各個部門的信息孤島,打破各部門數據的條塊分割,通過構建統一的行政審批雲,讓數據為老百姓「跑腿辦事」,省去了「跑斷腿、磨破嘴,辦事跑十幾個部門,蓋幾十個公章」的苦惱和無奈,這樣既提高了行政審批效率,又節約了開支。在提高公共服務產品質量方面,大數據通過對公共服務產品數據和服務對象數據的挖掘、分析,提升公共服務產品供給的精準化、分層化、個性化;通過公共數據的開放和兼容,讓公眾參與到公共服務產品設計、提供和監督等各個環節,實現公共服務產品質量的提高。
❹ 如何實現成功的數據治理
1.建立統一的數據標准。目前存在各業務部門標准不統一,部門之間數據標准矛盾或者相互混淆的情況,導致部門間數據交換,數據共享比較困難。建立統一的數據標准有助於對數據進行統一規范的管理,消除各部門間的數據壁壘,方便數據的共享,另外數據標准同樣對業務流程的規范化有幫助作用。
2.提高數據質量。電力數據的採集和傳輸受到採集感測器的精度、穩定性,通訊設備和環境因素的影響較大,導致存在大量的空值和垃圾數據。可通過數據質量管理對電力數據進行質量檢查,找出有問題的數據,通過數據清洗,問題整改,例外排查等一系列手段提高數據質量;另外還可以通過出具數據質檢報告,數據質量績效考核來督促各業務部門重視數據質量從而加強人員和業務的管理來提高數據質量。
3.數據資產管理。將經過處理的高質量數據資產統一管理,提供全生命周期的管理和數據安全保障。並可將數據資產進行分類和編目,方便數據的展示和數據共享,同時也為數據分析和數據挖掘(電力需求預測、電力系統優化等)打好基礎。
億信睿治是從元數據、主數據、數據標准、數據質量再到數據處理、數據資產、數據交換和數據安全,能夠為企業提供一站式解決方案,從而打通數據治理全流程。從而完成企業對於數據治理的要求
❺ 目前主流的數據治理平台有那些。
睿治數據治理平台是億信華辰完全自主研發的、開創性的、一站式綜合數據治理整體解決方案。睿治是全國唯一實現了數據治理場景全覆蓋的突破性產品,九大核心模塊:元數據、數據標准、數據質量、主數據、數據資產、數據安全、數據交換、數據處理、數據生命周期等,以創新的方式保證了企業的業務數據在採集、匯總、轉換、存儲、應用整個過程中的完整性、准確性、一致性和時效性,全面為客戶量身打造符合自身特徵的數據治理體系。
睿治始終站在國內頂尖梯隊,廣泛應用了MQ、分布式計算、zookeeper等最新技術。同時引領國內行業發展趨勢:
1、數據質量自動探查,內置常規數理統計演算法支持綁定機器學習演算法;
2、數據關系智能構建,基於存儲過程、sql、資料庫定義,自動理解數據之間的關系;
3、資產目錄主動感知,活化更新等先進技術,確保成為當之無愧的領頭羊。
❻ 哪裡有成熟的數據治理解決方案
億信睿智數據治理,經過多年的技術沉澱以及多年從事數據治療項目的經驗,億信推出的睿智數據治理平台有著相當成熟的數據治理解決方案,億信結合在金融、政務、醫療、衛生、租賃等各種行業的業務需求以及業務流程,推出了睿智數據治理平台,為行業的數據混亂,數據的結構不統一,數據的質量差等一系列問題提供了一套完整的,多樣化的,靈活的,與時俱進的數據治理解決方案。
❼ 國內數據治理軟體有那些急需求推薦
7國內能做數據治理的公司推薦你看看億信華辰的睿治數據治理管理平台,他們是專業的數據治理全生命周期產品供應廠商,還有 華為、普元做的也可以。
❽ 如何有效的進行數據治理和數據管控
數據治理和數據管控這幾年確實越來越受到各方的重視,它們其實有一定相似性和側重點。數據治理往往需包含整個數據生命周期,從創建到消亡的全過程。因此進行有效的數據治理,主要步驟有:建立數據治理委員會、制定數據治理的框架、數據治理方案確定、數據治理工具選定、數據治理實施、數據治理維護增強等。目前,市面上對於數據治理已經有了相對成熟的產品和服務商可以去咨詢一下,做的比較好的如IBM、億信華辰等,可以從多個方面進行治理,元數據、主數據、數據質量、數據標准、數據資產、數據處理、數據交換、數據安全、數據生命周期等。數據管控可能會根據企業實際情況,進行數據質量管控、元數據管控等某些方面的管控。而億信華辰的數據治理產品,可以自定義根據企業實際情況對數據進行管控。它智能糾錯減少數據異常,讓數據清澈如水,可靠的企業級元數據管家 理清企業數據資產,洞見數據背後的業務含義。