污染監測
A. 可以監測環境污染的植物有哪些
利用指示植物還可以監測環境污染的情況。比如,在綠化樹種中,樹姿優美、常年碧綠的雪松,對二氧化硫和氟化氫很敏感,若空氣中有這兩種氣體存在時,它的針葉就會出現發黃變枯現象。因此,當見到雪松針葉枯黃時,在其周圍地區往往可以找到排放二氧化硫和氟化氫的污染源。
科學家研究發現,高大的喬木、低矮的灌木和眾多的花草,以及苔蘚、地衣等一些低等植物,都可以作為監測環境污染的指示植物。它們是忠實可靠的「監測員」和「報警器」,在空間的不同層次組成了龐大的監測網。這些植物是:紫花苗蓿、雪松、日本落葉松、核桃、向日葵、灰菜、胡蘿卜、菠菜、芝麻、梔子花等,可監測二氧化硫。
鬱金香、落葉杜鵑、大葉黃楊、桃、杏、唐葛蒲等,可監測氟化氫。海棠、蘋果、山桃、毛櫻桃、小葉黃楊、油松、連翹、玉米、洋蔥等可監測氟化氫。
女貞、樟樹、丁香、牡丹、紫玉蘭,垂柳、葡萄、苜蓿等可監測臭氧。向日葵、杜鵑、石榴等可監測氧化氮。矮牽牛、煙草、早熟禾等可監測光化學煙霧。
此外,落葉松可監測氯化氫;柳樹、女貞可監測汞;紫鴨跖草可監測放射性物質。
B. 什麼是航空環境污染監測
按預先設計的區域和時間范圍,使用裝有專用儀器的飛機、直升機對環境指標和污染項目,進行空中觀測的作業飛行。其目的是掌握主要污染背景值長期變化趨勢,了解主要污染物在空氣、水體和土壤中的分布規律和變化趨勢。根據監測目標的不同,可分為航空大氣污染監測、航空海洋污染監測和航空陸地污染監測。
航空環境污染監測的基本任務是從空中快速評價環境質量,為制定海洋、大氣、陸地環境保護政策提供依據,為環境保護管理提供科學數據。航空環境污染監測是一項負有執法職能的作業。其優點是:可進行大區域宏觀污染監測;收集污染數據快;受自然人為影響小。
中國設有對近海海洋污染監測的專門隊伍,縮寫為「中國海監」,其飛機也塗有該標志,參與對海洋污染調查與執法工作。
C. 放射性污染的監測方法
9.3.2.1 核事故污染的監測
核事故往往造成的污染范圍很大,而且給人民生命和國民經濟帶來巨大的損失,引起全世界的關注。針對核事故的地球物理監測工作大體上可分為兩大部分:一是在核事故發生後開始的大區域快速監測工作,及時了解逐日的污染擴散范圍和方向並採取相應的防範對策;二是對所有核設施的長年監測工作,以便一旦發生事故時,能夠了解原有的放射性背景以及追蹤事故後污染逐步消除的過程。
(1)切爾諾貝利核事故監測
早在核電站建成之前,蘇聯的烏克蘭科學院從20世紀60年代初期就通過在基輔的監測站對基輔周圍地區(包括切爾諾貝利地區)進行長期放射性環境監測。監測的參數包括γ輻射背景值(用輻射儀測量)、散落物的放射性活度測量(用面積40cm×40cm的平底盤採集,盤底鋪一張浸泡過甘油的濾紙,採集持續兩周,採集的樣品放在瓷坩堝內在電熱爐中加溫到500℃灰化,然後測定其β輻射強度)、土壤放射性污染檢測(在地表下5cm深處用正方形取樣器10cm×10cm取樣,樣品風干、磨碎、過篩後,測定其β輻射強度)。
事故發生前,γ輻射劑量率為10~12μR/h(背景值),1986年4月26日發生事故後,4月30日升高到5mR/h,比背景值高約500倍。在隨後幾天內γ輻射值變化強烈,與放射性物質的繼續泄漏和天氣變化有關。5月9日在反應堆再次爆炸後,γ輻射也再次出現高峰。1986年底,γ輻射降低到50μR/h,1992年(監測經過公布前)再次降低為16~18μR/h,接近事故前的背景值。
土壤中的β放射性活度(按土壤質量計)在事故前為550~740Bq/kg,事故後升高到29600Bq/kg。事故前放射性90Sr的質量活度為3.7~22.2Bq/kg,事故後升高了10倍。
為了了解污染的區域分布,瑞典地質調查所動用了兩架地球物理專用飛機,在150m的高度上進行了航空γ能譜測量,1986年5月1~6日的測量結果如圖9.12所示。在Gavle附近發現明顯的高值。後幾天的調查重點移向瑞典南部,以了解是否可以允許奶牛吃該地春天新生的牧草。5月5~8日在瑞典其他地區用100km線距的東西向測線覆蓋,發現污染區不斷向瑞典-挪威邊界的方向擴大。從5月9日~6月9日整個瑞典用50km線距的航空測量覆蓋,在一些異常區測線加密到2km。蘇聯在1986年4月28日以後,在國內面積為527400km的區域內進行過比例尺為1∶10萬、1∶20萬、1∶50萬的航空γ能譜測量,以監測放射性污染彌散的區域。
圖9.12瑞典航空γ射線照射量率等值線圖 (照射量率單位為μR/h)
(2)追蹤核動力衛星
由於衛星在進入大氣層後解體成多個碎片,因此監測工作要在降落軌道周圍廣闊地區內進行,主要依靠航空γ能譜測量,發現異常後再進行地面檢查。
蘇聯的用核反應堆作動力的宇宙-954衛星1977年底~1978年初在加拿大西北部隕落。1978年初加拿大國防部和美國能源部合作,追蹤衛星隕落的碎片在加拿大的散落位置。首先根據計算機預測的衛星隕落軌道,劃出一條長800km、寬50km隕落區域,由大奴湖東端至哈德遜灣附近的貝克爾湖,並將其分為14段。用4架C-130Heracles(大力神)飛機,以1.853km的線距、500m的離地高度作了航空γ能譜測量。加拿大地質調查所的能譜系統首先在大奴湖東端冰上的一號地段探測到放射源,到1月31日對全區作了普查,發現所有放射性碎片落在一個10km寬的帶內,在該帶內又以500m線距和250m離地高度作了詳查。鑒於大力神飛機的飛行高度不可能再進一步降低,還採用了一套直升機探測系統,在9號地段的冰上發現許多弱的放射源,它們都是在大力神的飛行高度上所不能發現的,後來對這些小片的分析表明它們是反應堆芯的一部分。此後,直升機系統又在沿大奴湖南岸一帶發現了更多的放射性碎片(圖9.13),這些碎片隨北風飄向預訂軌道的南側。到3月底又在大奴湖的冰上作了一次系統的直升機γ能譜測量,數據分析進一步證明反應堆芯在進入大氣層後已全部解體。同年夏天,加拿大原子能監控管理局做了進一步的監測和清理工作,以保證清除所有的有害物質,共回收約3500枚碎片,最遠的在衛星軌道以南480km。
9.3.2.2礦山探采和選冶污染的監測
除了鈾礦床外,許多有色金屬、貴金屬、稀有金屬、稀土元素和磷礦床等也都伴生有大量放射性元素,對這些礦床的勘探、開采、選礦和冶煉都會導致放射性污染。為了清除這些污染,了解清除的效果,都需要進行監測。
(1)尾礦場地的污染與監測
在地質勘探階段,礦床雖未交給工業部門開采,但是在勘探過程中使用了水平巷道、豎井和淺井等工程,使礦區受到天然放射性元素的污染。在礦床開采過程中,礦石和廢石的堆放與運輸造成更大面積的污染,選冶過程中產生的尾礦和爐渣也是不可忽視的污染源。
圖9.13大奴湖地區由宇宙-954衛星放射性碎片引起的γ射線總計數的分布
1979~1980年美國能源部在鹽湖谷作了航空放射性測量,以便劃定尾礦場地范圍,並指導地面調查。測量系統安裝在直升機上,探測器由20個NaI晶體組成,每個體積645.7cm3,航高46m,線距76m。根據測量數據繪出了照射量率等值線圖,如圖9.14(a)所示和高於背景值的226Ra含量分布范圍圖,如圖9.14(b)所示。背景照射量率變化於430~645fA/kg(1μR/h=71.667fA/kg)之間。尾礦堆的照射量率最高超過1×105fA/kg。在尾礦堆以北有兩個照射量率偏高的突出部分,西面的一個據認為是由尾礦受風吹動造成的,東面的一個沿鐵路分布,可能由測量時正在運輸的放射性物質或由沿鐵路運輸散落的礦石或尾礦引起。沿鐵路的其他輻射異常據推測也是由散落物引起的。
利用此次航空放射性測量數據,鹽湖城衛生局和猶他州衛生廳劃定出14個此前未知的放射性異常區,地面檢查發現9個地點屬於鈾選礦廠的尾礦、1個是鈾礦石、3個是放射性爐渣,還有1個是儲存的選礦設備。在20世紀80年代初查出的這些污染地段都得到了清理。
(2)採煤和燃煤的污染及監測
許多重要的採煤區在採煤過程中形成大面積的放射性污染。例如,德國的魯爾礦區發現,由煤礦抽向地面的水中226Ra含量所導致的活度濃度達13kBq/m3,流入地下坑道中的水達63kBq/m3。魯爾區所有煤礦每年抽出的水含226Ra導致的總活度共37GBq。在地面上放射性污染的分布在很大程度上與水的化學成分有關,共有兩類含鐳的水,A類含硫酸鹽甚少或不含硫酸鹽,但含Ba2+離子;B類水含大量硫酸鹽,但不含Ba2+離子。在B類水中鐳不沉澱,而A類水中的鐳,當其與硫酸鹽混合後,鐳與鋇同時沉澱,形成放射性沉積物。很多煤礦已採煤百年以上,在礦山廢水流經之處形成很厚的沉積層,質量活度達150kBq/kg,並導致土壤和植物的污染,土壤質量活度由0.2~31kBq/kg,在水道兩側的新鮮植物中含226Ra,其質量活度達1kBq/kg。
目前世界上許多發展中國家都以煤作為主要能源,因此粉煤灰成為一種量大面積的放射性污染源。據聯合國原子輻射效應科學委員會(UNSCEAR)的統計,一個每天燒煤10t的熱電廠,向大氣釋放的238U放射性活度達1850kBq,一個1000MW的熱電廠每年排放粉煤灰5×105t,其中1.4×105t排入大氣。調查表明,在熱電廠周圍由於粉煤灰放射性引起的癌症死亡率比在核電站周圍高30倍。
圖9.14鹽湖谷航空放射性測量
(3)石油開采及運輸中的放射性污染和監測
石油開發過程中的放射性污染主要來自放射性測井。在測井中使用的放射性物質主要有中子源、同位素等,如鎇鈹(241Am-Be)中子源,137Cs,226Ra,131Ba,131I,113Sn,113In伽馬源等。測井過程中的放射性污染主要是因操作不當造成的,如:由於操作不慎,配置的活化液濺入外環境;在開瓶分裝、稀釋及攪拌過程中,有131I氣溶膠逸出,造成空氣污染;在向注水井注入131I活化液時,由於操作不當,造成井場周圍的表面污染;測井過程中玷污井管和井下工具等。
在石油化工生產中,承壓設備(如鍋爐爐管、液化氣球罐、液化氣槽車、承壓容器、管線等)的探傷、液位控制、液位測量、密度測定、物料劑量、化學成分分析及醫療中的透視、拍片、疾病治療等,廣泛地採用了放射技術。在料位、液面、密度、物料劑量、化學成分分析方面的放射性同位素源的劑量、活度一般是幾個毫居里(mCi),很少超過1000mCi。不過,在正常工作情況下,不論是從事工業探傷的人員還是同位素儀表操作人員,身體健康均不會受到放射性損傷。
油田上放射性污染面積大的地方,甚至可以在1∶50萬的航空γ能譜測量中反映出來,污染物以鐳及其衰變產物為主,鈾、釷含量不超過土壤的背景值。該企業用路線汽車能譜測量在斯塔夫羅波爾邊區測過的40個油氣田,其地表全被放射性廢料污染,發現300多個污染地段,γ射線照射量率為60~3000μR/h,其中大部分在100~1000μR/h范圍內。
(4)磷肥的放射性污染及監測
在天然環境中磷和鈾之間有著穩定的共生關系,磷肥的原料———磷礦石含有偏高的鈾,磷肥的副產品中則含有較多的鈾衰變產物,這些都會給磷肥廠周圍的環境造成放射性污染。
在西班牙西南部奧迭爾河和廷托河匯合入海處附近有一個大型磷酸廠,用於製造磷酸鹽肥料,其原料為磷灰岩,含有大量鈾系放射性核素。在西班牙生產磷酸的方法是用硫酸來處理原岩,在此過程中形成硫酸鈣沉澱(CaSO4·2H2O),稱為磷石膏,這種副產物或者直接排入奧迭爾河,或者堆在廠房周圍。因此,需要估算該廠每年排入周圍環境的核素數量。此外,還測定了西班牙西南部幾種商品肥料的放射性元素含量,以估計其對農田的放射生態影響。
所有的調查工作均基於測定固體和液體樣的U同位素、226Ra和210Po及40K的含量。知道每年產出的磷石膏量及其中U,226Ra,210Po的質量活度平均值,得出工廠附近每年排出的U同位素總活度約0.6TBq,210Po總活度為1.8TBq,226Ra總活度為1.8TBq,各種放射性核素總量的80%存留在磷石膏堆中,其他直接排入奧迭爾河,存放的磷石膏也逐漸被水溶解流入河中。到達廷托河的水238U活度濃度為40Bq/L,226Ra為0.9Bq/L,210Po為9Bq/L。為研究河流的污染,還取了水系沉積物樣,樣品濕重數千克,烘乾、磨碎、混合後在高純鍺探測器上測量,探測器覆蓋10cm厚的鉛屏,內有2mm的銅襯,以便測得較低的質量活度。
磷肥廠的環境放射性污染在我國亦有發現。核工業總公司在上海市郊進行航空γ能譜測量時,曾發現10×10-6的鈾異常,是背景值的45倍,經查是由化肥廠的磷礦粉引起的。
9.3.2.3建築材料的放射性污染及監測
除了房屋地基的岩石、土壤會逸出氡外,建築材料中也可能含有某些放射性元素,因此也可能成為放射性污染源。當建築材料中鐳的質量活度高於37Bq/kg時,會成為室內空氣中氡的重要來源。有些地方用工業廢料作為製造建築材料的原料,可能將工業廢料中的放射性污染物帶入室內。例如利用粉煤灰或煤渣製造建築材料曾被認為是廢物利用的好辦法,但是當煤的放射性元素含量偏高時,會導致嚴重的後果。我國核工業總公司曾經對石煤渣所建房屋的室內吸收劑量率做過調查,發現石煤渣磚房屋的γ輻射吸收劑量率比對照組的房屋高出3~9倍。我國用白雲鄂博尾礦、礦渣做原料製造水泥的工廠,用其生產的水泥建造的房屋時室內氡的濃度比對照組高出4~6倍。而美國對常用建築材料放射性的調查結果表明,木材輻射出的氡最少,混凝土最多。
我國居民住宅多用磚作建築材料,其中放射性40K質量活度最高為148Bq/kg,Ra為37~185Bq/kg,釷為37~185Bq/kg。對於天然建築材料,建材行業標准(JC518-93)將其分三類,見表9.4。
表9.4我國天然建築材料核輻射分級標准
俄羅斯勘探地球物理研究所提出用以下參數對建築材料的輻射室內居民輻射劑量進行監測。
9.3.2.4 核廢料處理場地的選址和勘察
各國根據自己的條件來選擇適於儲存核廢料的地質體,但迄今研究得最多的是兩種:鹽體和深成結晶岩體。鹽體被認為是儲存核廢料得最好地質介質,其優點是未經破壞的鹽層乾燥,鹽體中產生的裂隙易於癒合,鹽比其他岩石更易吸收核廢料釋放的熱,鹽屏蔽射線的能力強,鹽的抗壓強度大,而且一般位於地震活動少的地區。而另外一些國家,因為各自的地質條件,主要研究利用深成結晶岩儲存核廢料。如加拿大和瑞典等國家,大部分領土屬於前寒武紀地質,它們研究的對象包括片麻岩、花崗岩、輝長岩等。這些岩體能否儲存核廢料主要取決於其中地下水的活動情況。由於結晶岩中地下水的唯一通道是裂隙,所以圈定裂隙帶並研究其含水性是重要的任務。在具體選擇儲存場地時考慮以下幾個條件:地勢平坦、因而水力梯度小,主要裂隙帶不要穿過場地,小裂隙帶應盡可能少,要避開可能有礦的地點。
其他研究的地質體還有粘土、玄武岩、凝灰岩、頁岩、砂岩、石膏,碳酸鹽也是可以考慮的目標。一般來說,碳酸鹽岩是不適合的,但由不透水岩石包圍的碳酸鹽岩透鏡體是值得研究的。除了陸地上的地質體外,對海底岩石的研究也已經開始。
(1)鹽體選址勘察中的地球物理工作
A.鹽體普查
為了儲存核廢料,首先要了解鹽層的深度、厚度和構造,圈出適合儲存的鹽體,一般傾向於把核廢料儲存在鹽丘里。
重力測量。重力法對鹽丘能進行有效的勘察。鹽的密度穩定,為2.1×103kg/m3,往往低於圍岩(2.2×103~2.4×103kg/m3),在鹽丘上可測到n×10~n×100g.u.的重力低。當鹽丘上部有厚層石膏時,由於石膏密度大,結果形成弱重力低背景上的重力高。當鹽丘為緻密火成岩環繞(火成岩在鹽丘形成過程中侵入)時,則在重力低的邊緣出現環狀重力高。鹽丘表面起伏可用高精度重力和地震測量綜合研究。當鹽丘地區的重力場非常復雜時(重力場為鹽上、鹽下層位、鹽層和基底的綜合反映),採用最小化法進行解釋:首先根據地質-地球物理資料提出模型,然後自動選擇與觀測重力異常最吻合的模型曲線,使兩者偏差的平方和等於最小值。
電法測量。鹽比圍岩電阻率高,是電性基準層,以往鹽層構造用直流電測深研究,近年來則愈來愈多地採用大地電流法和磁大地電流法。採用大地電流法確定鹽體埋藏深度時,利用大地電流平均場強與鹽層深度之間的統計關系,因此要掌握少量鑽探和地震資料。平均場強的高值區對應於鹽丘和鹽垣,這樣圈出的局部構造很多已被地震或鑽探所證實。
地震測量。在構造比較簡單的沉積岩區地震反射和折射法探測鹽層起伏是很有效的。例如丹麥為儲存核廢料選擇的莫爾斯鹽丘,其位置和形態就是根據反射面的分布確定的。在某些情況下地面地震法只能確定鹽丘頂部平緩部分的位置。而側壁的形態和位置難以確定,這可以採用井中地震。
總之,在選址時,為了研究鹽層構造,一般先利用重力和電法,兩者結合起來能更詳細地確定鹽層構造在平面上的大小和形態。根據重力和電法結果布置地震測網,通過地震法可准確確定鹽體深度,而利用井中地震則可准確確定鹽體側壁的位置和形態。
B.研究鹽體的內部結構
為了確定鹽體是否適應於儲存核廢料,必須研究鹽體內部結構,即其所含雜質(夾層)數量、含水性和裂隙發育程度。
確定雜質(夾層)的數量。鹽的相對純度是影響其能否儲存核廢料的一個重要因素,雜質的出現會使鹽層的抗壓強度減小,屏蔽射線的能力降低。鹽體所含雜質包括泥質組分、石膏等,泥質組分有的形成單獨的夾層,有的與鹽混在一起,形成泥鹽。美國得克薩斯州的帕洛杜羅盆地用天然γ測井和密度γ-γ測井評價了中上二疊系鹽層的純度。γ射線強度與泥質含量有關,因為泥質組分中的釷量較高。γ-γ測井求得的密度則與石膏的百分含量之間存在著線性相關關系。計算了每個鑽孔每個鹽層的γ強度平均值。不到30ft的夾層,其γ強度與鹽層一起平均,當夾層厚於30ft時,就把鹽層作為兩個單獨的層處理,據此編制了不同旋迴的γ射線強度的等值線圖,它實質上就是泥質含量分布圖,從中可以選擇泥質含量最低的地區作為儲存核廢料的地點。
在美國鹽谷地區還曾利用垂直地震剖面法,根據波速的不同劃分鹽中的夾層。而在丹麥的莫爾斯鹽丘則用井中重力研究了鹽內的夾層。
研究含水性。鹽體含水對建立核廢料是一個潛在的危險,它使部分鹽溶解成為鹵水,減小鹽的機械強度並腐蝕廢料容器。測量鹽體的含水量可以採用中子測井,以255Cf為中子源。試驗表明,在釋放的γ射線譜線上氫本身的峰很弱,不能用作評價含水量的尺度,但可利用快中子與Na和Cl原子核的相互作用,以下列參數衡量含水量:Na中子非彈性散射峰與Cl中子俘獲峰的比值。非彈性散射是指Na的原子核吸收一個中子並放出一個中子和γ射線,γ射線峰的位置在138keV;中子俘獲是指Cl的原子核俘獲一個中子並放出γ射線,其峰的位置在789keV。上述比值與水的含量呈正比。美國曾利用瞬變電磁法來確定鹵水的位置,在實際探測時發現,鹵水的位置與瞬變電磁法一維反演的低阻層位置相當吻合。
了解裂隙發育程度。為了保證核廢料庫的安全,必須了解鹽層的裂隙發育程度。主要方法為井中電法(特別是無線電波法)和聲波測井。鹽的電阻率高,電磁波傳播的損耗小,無線電波法的探測距離大,夾層或裂隙的電阻率或介電常數與鹽不同,這些都是應用無線電波法的有利條件。無線電波法包括透視和反射法,透視法測孔間信號的衰減,而反射法的發射和接收天線位於同一孔內,測電磁脈沖的走時和反射層的特徵。均勻的鹽不會產生明顯反射,裂隙增多則反射亦增多。無裂隙的鹽電阻率高、衰減小,多裂隙的鹽則電阻率低、衰減大。因此,衰減小、反射少的鹽體更適於儲存核廢料。
用聲波測井確定裂隙帶的位置時可以利用不同的參數,如反射波幅度、聲波速度和區間時間。
(2)深成結晶岩體選址和勘察中的地球物理工作
核廢料擬儲存於花崗岩深成結晶岩體500~1000m深度上類似於礦山的處理洞穴中。在深成結晶岩體的選址和勘察過程中,地球物理工作分為三個階段,即場地篩選、場地評價和洞穴開挖過程中的勘察。
A.場地篩選
首先開展區域普查來篩選幾個地區,作為候選的處理場地,每個地區的面積可達上千平方千米。在篩選過程中,了解深成岩體的形態和深度、周圍地質環境、主要不連續面的位置和走向,蓋層的特徵、岩石的完整性等都是很重要的。由於場地篩選是區域性調查,涉及面積很大,所以要選用快速普查性的地球物理方法,尤其是航空地球物理方法。航空磁測曾被用來確定深成岩體的邊界以及岩體中的岩石與構造界面,一般與航空磁測同時開展的航空γ能譜測量也可用於劃分花崗岩體的邊界,花崗岩體鈾的含量可達8×10-6,而圍岩往往低於2×10-6。航空電磁法用來填繪裂隙帶在近地表的投影以及覆蓋層的特徵。湖區的裂隙帶則可採用船載聲吶設備圈定。岩石的完整性可以通過測量岩石的整體電阻率來評價,採用的方法有大地電磁法(MT)、音頻大地電磁法(AMT)、瞬變電磁法(TEM)和直流電阻率法等。
地面重力法曾被用來確定深成岩體的形態和深度及其地質環境。圖9.15顯示一條南北向跨過岩基的39km長的重力剖面,圖上包括實測和模型重力曲線以及根據當地常見岩石單元作出的解釋剖面。與岩基有關的100g.u.的重力低非常明顯,疊加在重力低上的局部重力高很可能是由高密度的包裹體引起。
B.場地評價
場地評價是在經過篩選的較小區域內進行更詳細的調查,每個區域的面積可達100km2,總的目標是圈定主要裂隙帶,確定其幾何形態,進行岩性填圖並了解覆蓋層的特徵。
應用高解析度地震反射法了解裂隙帶的深部情況以及發現深埋的裂隙帶。可以探測到寬於地震波主波長1/8的目標,例如在P波速度約5500m/s的花崗岩中,若採用150Hz左右的工作頻率,就可以探測到5m寬的裂隙帶。但是要求探測離地表1000m以內的反射體意味著有用的反射包含在地震記錄的第1s內,然而對高解析度地震常用的炮檢距來說,在這一時間段內也有地滾波到達,為了減小地滾波的影響,需要採用頻率濾波、f-k濾波、減小炸葯量以保留信號的高頻成分,並且選擇適當的檢波器距使地滾波在疊加時盡量減小。
目前還提出了三種應用地球物理方法估算裂隙的水壓滲透性的途徑:一是利用裂隙空間的電導率;二是利用裂隙內聲波能量的損耗;三是利用地震波通過時鑽孔對裂隙壓縮的響應。
對於准備開挖的場地來說,層析方法的作用更大,因為在這樣的地點鑽孔的數目要控制在最低限度,以防在岩體中形成新的地下水通道。
C.開挖階段的勘察工作
開挖儲存核廢料洞穴的工作開始以後,需要了解洞穴周圍岩體的水文地質條件和地質力學條件。由於本階段研究的目標減小,所以要採用高解析度,因而是高頻的地球物理方法。雷達、超聲波和聲輻射方法都曾得到有效的應用。
圖9.15跨過岩基的一條南北向重力剖面圖和二維重力模型(右側為北)
利用超聲波可以確定開挖破壞帶的厚度。利用聲輻射測量可以監測開挖的安全性,聲輻射參數的變化可以用來預測可能產生的岩爆並確定其位置。此外,聲輻射測量還用於追蹤向裂隙帶內灌漿的進程,這時在裂隙帶附近的一系列鑽孔內放置加速度計,在灌漿過程中記錄的聲輻射強度是同灌漿的進展相關的。
總之,在深成結晶岩地區核廢料處理場地選址和勘察工作中,地球物理方法既能快速而經濟地做到對大片區域的地質構造進行全面的了解,又能對候選場地進行詳細評價和勘察。表9.5將各個階段的地球物理工作加以總結。但在各個階段的工作中,除地球物理方法外,還應綜合應用其他方法,尤其是水文地質、地球化學、地質和岩石力學方法等。由於地球物理方法在解釋上的多解性,還應通過鑽探來驗證。
表9.5深成結晶岩區核廢料地質處理中的地球物理工作
D. 水資源污染的監測
(1)無機污染的監測
被無機鹽污染的水,由於離子濃度增高,使其電阻率降低。一般來說,地下電阻率與介質孔隙的連通性、孔隙中是否有液體以及液體的電阻率有關。如果孔隙的大小和連通性基本不變,而液體的電阻率只和污染有關,用電法就可以確定污染的范圍和程度,通過電測深和時間域電磁法可以確定污染的垂向分布,而通過電剖面法和頻率域電磁法可以確定污染的橫向范圍,用電(磁)測量比只用鑽探成本低、效率高。此外,電(磁)測井也是一種輔助手段。
應用地面電法監測污染的基本條件是:污染水與非污染水電阻率有明顯差別,埋藏不太深,污染水體有一定的厚度,地表物質電性比較均勻。工作時可先用電測深或時域電磁法確定污染水體頂底板深度,然後按一定系統進行固定極距的電剖面或固定裝置和頻率的頻域電磁測量。電法一般都要與少量監測井互相配合,解釋時利用地質、鑽探和其他地球物理資料。對工礦廢水污染的監測是受到廣泛關注的問題,利用地球物理方法對工礦廢水進行污染監測有許多成功的實例。
圖9.1用電法監測工廠廢水對岩溶的加速作用
工廠的廢水排入地下,不僅污染水源,而且在某些地區還加速地下岩溶的發育過程。例如在蘇聯的奧卡河沿岸有一個大的化工廠生產硫酸,酸性廢水滲入地下,溶蝕了石膏質的岩石,在這些岩石中形成了岩溶洞穴,老洞穴不斷加大、新洞穴不斷出現,連續成地下通道,沿著這些通道,溶解的物質流入奧卡河,造成河水污染。通過地面電法測量和河水電阻率測量可以圈定岩溶水的通道位置,並且評價岩溶作用隨時間的變化。從圖9.1中時間t1和t2兩次觀測的視電阻率曲線可以看出,低電阻率的范圍加寬,是溶洞變寬的結果。河水電阻率測量表明,被溶解物質的流入量明顯增加(低電阻率面積擴大)。通過上述測量確定了廢水污染的范圍和程度,以便採取必要的措施。
礦山和油田廢水也是水資源的重要污染源,例如在美國有成千上萬口已經廢棄的、封閉不好的油氣井,由於二次回採而使產油層產生過壓,這些井會使注入油田的鹵水沿鑽孔向上運移而進入淺部的飲用水含水層。在俄克拉荷馬州林肯縣產油的普魯砂層附近曾利用可控源音頻大地電磁法來圈定鹵水的污染。從 20 世紀 30 年代就開始從普魯砂層採油,從 50 年代開始注入鹵水來提高回採率。瓦穆薩組是該區飲水的主要水源層,淡水層的底部深度變化於 40 ~ 135m 之間,固溶物總量低於 500mg/L。1979 年所打的試驗井表明在油田上含水層的鹵水含量異常高。在該區選出的一些部位按一定網格開展了可控源音頻大地電磁法,圖 9. 2 是一口廢井附近典型的視電阻率擬剖面,它表明深部的良導物質向地表運移,其他一些測線上也檢測到另外一些污染體。根據地球物理結果所打的兩口試驗井的 Br/Cl 比值表明,瓦穆薩組的污染源確實是普魯砂層的鹵水。
圖 9. 2 廢注水井附近的視電阻率等值線圖
(2)有機污染的監測
地下水有機污染的種類較多,其物性特徵不盡相同,探測難度較大。來自煉油廠、化肥廠、制葯廠等排放的廢液多為有機污染,它們在自然環境下不易降解,化學需氧量(COD)、總有機碳(TOD)等指標較高。多數情況下有機污染物與水是非混溶的。輕非水相液體污染物(LNPAL)集中在地下水的表層,而重非水相液體(DNPAL)污染物集中在地下水的底部,這使地下水不同程度地混雜了有機雜質,引起地下水在物理性質和化學性質上的變化。這樣可以根據不同的物理性質(化學性質)選取不同的地球物理方法。
20世紀90年代加拿大和美國的學者在加拿大安大略省開展了一項針對乙烯(C2Cl4)的試驗研究。乙烯用於服裝乾洗和金屬清洗,僅1986年美國就生產乙烯12×108L。乙烯的特點是密度大,在水中下沉,不太受地下水橫向流動的影響。雖然乙烯的溶解度(200mg/L)低,但仍然比世界衛生組織規定的飲水標准(0.01mg/L)高幾個數量級,每排放1L乙烯最終可污染1000×104L的地下水。試驗場地面積9m×9m,周圍用鋼板打入地下,穿過3.3m厚的地表含水層進入下伏半隔水層,有效地隔斷場地內外的水力聯系。通過鑽孔向場地內注入770L乙烯,在圍繞注入孔的9個監測孔內進行中子、密度和感應測井,還定期測地面和井地電阻率。探地雷達工作頻率200MHz,300MHz,500MHz,900MHz,沿測線進行測量。地球物理監測開始於注液前幾天,注液延續了3d,注液後觀測38d,第一個星期每8h觀測一次,以後時間逐漸加長。隨後採用表面活化劑清除乙烯,再監測清除的過程。在中子測井曲線上,由於氯俘獲中子,出現明顯的負峰,如圖9.3(a)所示,從電阻率異常的變化上則可以看出乙烯隨時間的運移,如圖9.3(b)所示。探地雷達測量表明,注入的乙烯先在注入點下1m深左右的界面上匯聚,然後沿該界面向兩側擴散。
圖9.3注乙烯後參數變化
地面加油站儲油罐和地下儲油設施普遍存在腐蝕和泄漏現象,難以發現。北京、沈陽、西安、成都均發生過此類事故。發生在北京地區某加油站的一次漏油事故中,由於污染區面積較大,致使自來水廠停水和地下施工停工。國外此類事故更多,據報道美國對21萬個加油站調查發現,在20世紀70年代以前建設的加油站幾乎都有滲漏,其中1.8萬個已對地下水造成污染。油氣滲漏的檢測技術較多,其中烴類檢測技術(油離烴)、探地雷達技術,能現場實時給出檢測結果,且快速、方便;吸收烴乙烷、熒光光譜法探測精度高、結果可靠。圖9.4和圖9.5分別是北京市某加油站滲漏污染范圍的游離烴CH4和吸附烴C2H4檢測效果圖。
圖9.4北京某加油站滲漏污染范圍的游離烴CH4檢測效果圖
圖9.5北京某加油站滲漏污染范圍的吸附烴C2H4檢測效果圖
石油污染頗為常見,已有許多利用地球物理方法探測石油污染的實例。例如利用探地雷達探測石油污染、用常規的直流電法和電磁法有可能探測石油污染。石油進入地下介質的孔隙系統後可使其電阻率明顯增高。研究人員利用地面低頻電磁或電阻率成像方法追索到幾十至幾百米深處的石油污染。例如在美國俄克拉荷馬城的Carlswell空軍基地,利用鑽孔EM測量數據作出地下電阻率三維分布圖像,推斷出石油污染的位置,據此所打的鑽孔證實了高阻區域與油污染吻合。
圖9.6屏蔽體法的室內試驗和數學模擬結果
浮在潛水面上的高阻油層對電法測量來說會產生屏蔽作用,因此研究人員提出了「屏蔽體」法(SB)。屏蔽體法是一種井地電法,一個供電電極置於污染層之下,用於確定污染層的范圍。室內模擬和數學模擬的結果如圖9.6所示。圖(a)為室內測得石油污染帶上的電位值V(mV);圖(b)為數學模擬計算的電位值V(mV);圖(c)為數學模擬計算的電位梯度ΔV(mV/m)。室內模擬在電解質槽內進行,數學模擬採用有限元法。在野外試驗中採用了電測深和屏蔽法兩種方法,其目的是確定石油污染的范圍,污染層厚度0.2m,深5.7m,賦存於7m厚的第四系礫-砂沉積中,下伏不滲透的白堊系沉積。電測深AB/2最大為50m,在AB/2=15m時沿一些測線出現了電阻率的升高,為污染帶的響應,但最高異常值僅達背景值的15%,難於斷定污染帶的橫向范圍,而屏蔽法顯示了污染帶的范圍比電測深要清晰得多,地球物理野外測量結果已被監測孔證實。
澳大利亞CoffeyPartners公司曾提出,用探地雷達和低頻電磁法探測石油污染有一定的困難,只有頻率在30kHz~5MHz間的電磁波法效果最好。當頻率為1.2MHz時,通過土壤和風化岩石的最大探測深度約30m。在南澳的一個大型柴油機車加油站發現在終端泵站和加油點之間有明顯漏油。開始用EM31電磁儀作剖面測量和探地雷達探測均未奏效,後改用GRC-2儀器作無線電波剖面法,其垂直發射線圈和水平接收線圈沿剖面移動,兩者保持零耦合狀態,測量垂直磁場強度,線圈距在工作期間保持不變。結果在柴油污染范圍內測出明顯垂直磁場強度低值異常,並經鑽探和槽探證實。
總之,地下水有機污染濃度較低,物理化學性質上的變化較小,監測難度大,必須採用高解析度、高密度的方法以及應用地球物理的綜合解釋方法技術。
(3)地下水污染路徑的動態監測
以河北滄州為例。河北滄州地處濱海平原,該區以沖積-湖積的粉細砂鬆散岩層為主,並夾有多層海積層。自上而下共有五組含水層,且咸、淡水交替出現,地下水含氟量較高(2~7mg/L),地下水補、經、排條件差,地下水循環交替作用緩慢,垂向補給逐漸被側向補給所代替。由於集中開采地下水,使得滄州地下水失衡而形成巨大的地下水漏斗(圖9.7)。
圖9.7滄州漏斗Q2含水組水位下降剖面圖
滄州漏斗的形成給地下水資源的開發、利用帶來了嚴重的問題,尤其是地下水嚴重污染。由於漏斗的形成,加速了地面污水向地下水的倒灌,使地下水造成污染,同時稠密的機井給地表(淺層)污水、鹹水和淡水層形成的污染通道,使所利用的含水層遭受不同程度的污染。利用地球物理方法,如用直流電法和探地雷達,在地面監(遙)測地下水漏斗的動態變化、監測地面上工業和生活污水向漏斗遷移的路徑,從污染源和污染路徑上卡住污染物對地下水的污染。
(4)井中多個含水層之間交叉污染的監測
已經廢棄的工業用井和供水用井,以及一些設計得不適當的監測井穿過多個含水帶,使得地下水流系統「短路」。如果其中有的含水層已被污染,便會產生水層之間的交叉污染。美國地質調查所和美國環境保護署合作在賓夕法尼亞州東南部三疊紀斯托克頓組地層中利用地球物理方法研究了廢棄井中多個含水層之間的交叉污染,測量了井內的垂向水流,取樣並分析了井中的液體。所使用的地球物理方法包括井徑測井、液體電阻率測井、液體溫度測井、自然伽馬測井和單點電阻測井。在16個鑽孔的45~143之間進行,用以劃分岩性、地層,圈定了含水裂隙和井液垂向運移帶,測量了垂向液流,確定了井液的運移方向和速度。
(5)地表水污染治理中的地球物理工作
在杭州西湖換水過程中曾經成功地應用了地球物理方法。西湖由於常年污染,湖水的水質和透明度日益變差,市政府決定開鑿隧道引錢塘江水更換西湖湖水。為了解江水進入西湖的運移和分布情況、換水的進度和效果,利用電阻率法在換水過程中及其前後進行了動態和靜態觀測(圖9.8)。
在換水之前對江水和湖水的電阻率進行了測量,江水的電阻率變化范圍為81~93Ω·m,平均為88Ω·m。西湖由五個相互連通的湖泊組成,其中電阻率最低的變化范圍為55~60Ω·m,平均為57Ω·m,最高的變化范圍為69.5~75Ω·m,平均為72Ω·m。這是利用電阻率法監測換水過程的基礎。水電阻率觀測比例尺為1∶5000,線距200~400m,整個湖面均勻發布20條測線。觀測儀器為測井全自動記錄儀,安裝在電瓶驅動船上,用七心電纜連接電源、探測器和自動記錄儀。探測器為井液流體電極系,固定在水深約70cm處,換水期間每天沿各測線連續探測水的電阻率一次。根據觀測結果,可以得出江水進入西湖後逐日的擴散范圍、水流的主要方向,指導了換水工作的進行。同時發現了一些原來未發現的污染源。
(6)地下水污染防護中的地球物理工作
地球物理方法也可用來監測有機化合物污染的治理過程。美國能源部執行了一項「非乾旱區土壤和地下水易揮發有機化合物綜合示範計劃(VOC-NAS)」,向地下注入甲烷與空氣的混合物,作為新陳代謝的碳源,以繁殖一種微生物,使三氯乙烯降解。混合物注入地下後,在運移的途徑上,由於置換了地層水,使電阻率升高,因而可以通過地下(井間)電阻率層析使運移的途徑成像。電阻率層析是在5個鑽孔之間進行的,每一孔內有21個電極,從地面到61m深度等距發布,兩孔之間的地面有4個電極。結果發現,注入氣體流動途徑為復雜的三維通道網,有些通道延伸到距注入井30m以外,這些通道在幾個月過程中並不穩定,不斷有新通道出現,氣體注入通道的電阻率隨時間而增大。影響微生物繁殖的其他因素還包括大氣降水和來自地表的水溶養分。所以,在另一組試驗中,水從地面滲入地下並作出滲入前和滲入過程中某一瞬間電阻率差值的圖像,這些圖像表明,水的入滲也是限於具有三維結構的狹窄通道,水流受地層滲透率變化(砂和泥的分布)的控制,不過水流通道隨時間的變化小。這些通道在圖像上表現為低阻帶。
圖9.8西湖初次換水混合流推進圖
美國桑迪亞國家實驗室提出一種不盡相同的治理方案,並在南卡羅萊納州的一個場地進行了試驗。該場地也被揮發性的三氯乙烯和四氯乙烯污染。為了治理污染,打了兩口水平井,由潛水面以下的井注入空氣,而由上面的另一口井抽取污染物,當空氣通過地下孔隙時溶解揮發性污染物,再被上面的井抽出。空氣在地下的分布會直接影響治理的范圍並且影響如何對注入氣流進行調節。因此,桑迪亞實驗室利用監測井井間地震數據,根據注入氣體飽和度變化引起的地震波速變化了解空氣的分布。為能提高解析度,選用井間地震層析成像方法,既減少近地表雜訊的影響及與近地表物質有關的衰減,又使震源和檢波器更接近目標,減少高頻波的能量損耗,高頻波波長短而具有更高的空間解析度。為此,在空氣注入前後都作了S波和P波層析。S波震源為頻率掃描氣動可控震源,用井中三分量檢波器。震源和檢波孔相距27.4m,孔內測點垂向距離1m。
捷克的一家發電廠也進行過類似的監測,他們為了檢查粉煤灰堆放池的施工質量,在未敷設防滲層之前先在池底埋設若干條平行長導線作為檢測用的供電電極,然後在其上敷設防滲層。施工結束後向池內放水,將設置在防滲層下的長導線作為供電線路的一個極,另外一個極置於無窮遠,在小船上用單電位電極進行測量,在池邊用經緯儀測量定位。如果測到高電位異常,即為防滲層破漏處,發現率為94%。
E. 大氣環境污染監測項目中的必測項目有哪些
綠健君安汝南服務部為你解答:室內主要有甲醛、笨系物(笨、二甲笨、甲笨)TVOC』、氨等六種。
F. 環境污染的檢測
地球的表生帶是岩石圈演化及其與大氣圈、水圈、生物圈相互作用形成的土壤圈的活躍地帶。表生帶的物理、化學作用,主要是風化作用、地表水和地下水的地球化學作用、沉積作用以及化學元素的遷移作用,在地質學上稱之為後生作用過程。工業革命之後,人類對自然改造能力日趨強烈。如地下資源大量開采,廢渣、廢水、廢氣大量排放,破壞了物質的自然循環,使表生帶的元素遷移遠大於後生過程;打破了岩石圈表生帶與水圈、大氣圈之間化學元素的自然平衡,也就是改變了生物圈的生存環境。
表生帶污染,主要是土壤和水體。污染物質分為兩類:一類是有機物質,一類是無機物質。在無機污染物質中,主要是重金屬元素。采礦和冶煉是向環境中釋放重金屬的主要污染源。在土壤和水體中的重金屬,不能被微生物分解;在土壤中沉積,隨環境變化而產生各種化學反應,甚至轉化為毒性更強的化合物;通過食物鏈在人體內積蓄,嚴重危害人類健康。
目前土壤環境研究中的重金屬,主要是汞(Hg)、鎘(Cd)、鉛(Pb)、鉻(Cr)、砷(As)、銅(Cu)、鋅(Zn)、鎳(Ni)、硒(Se)等。其中毒性最大的是汞(Hg),其次是鎘、鉛、砷等。
土壤環境背景值是指在不受或少受人類活動和污染影響的土壤中的成分值。實際上已經很難找到絕對不受污染的土壤,因此環境背景在時間和空間上都具有相對概念。
1961~1984年美國地質調查局先後分兩階段,對國土背景值進行調查,測量39個元素。英格蘭和威爾士土壤調查部1979~1983年進行土壤元素調查,測量19個元素。1978~1984年,日本對全國25個道的土壤進行元素調查,測量8個元素,即Cu、Pb、Zn、Cd、Cr、Mu、Ni、As等。還有前蘇聯、加拿大等30個國家都進行了環境背景元素研究。
1978年,我國農業部對北京、天津、四川等13個省、市進行了土壤調查,分析12個元素;1982年中國環境監測總站在松遼和湘江谷地,測了8個元素的背景值(Cu、Pb、Zn、Cd、Ni、Cr、Hg、As)。「七五」期間由中國環境保護總局主持,對全國進行土壤調查(4095條剖面),測13個元素。「八五」期間(1995年),中國地質科學院又一次組織調查。
局部(或區域)重金屬污染調查,調查的目的在於控制。局部調查都是以排放源為中心,污染物主要隨風向,或隨地上、地下水流向進行遷移。隨著煙氣排放,各金屬成為大氣中顆粒物的重要組成部分,直徑小於10μm的稱為飄塵,直徑大於10μm的稱為降塵。由於重力作用,直徑大的顆粒物在排放源近處沉降;微細的顆粒物,可以在大氣中停留很長時間,分布范圍很廣。
以固體或液體形式排放的重金屬污染物,在土壤中,隨著氧化、還原、酸鹼度和生物作用的環境變化而轉化,隨地面或地下水遷移,或被植物吸收。
環境重金屬污染,實際是人為重金屬的重新分布,是污染的源泉。
背景調查目前使用的元素分析方法主要是光譜分析,分析速度快,成本較低。
區域性污染主要是一個或幾個污染物引起的。調查是以污染源為中心的局部區域,由於重金屬元素的長時間累積,金屬元素含量較高,一般是採集樣品進行儀器分析。輕便X射線熒光儀在這一領域應當發揮了重要作用。
1.攀枝花重金屬污染研究
攀枝花鋼鐵公司位於金沙江和雅礱江交匯處(庹先國、滕彥國等,2003)。1965年以來,廠礦大量排放廢氣、廢水和廢渣,嚴重污染環境。該地區1965年森林覆蓋率65%以上,到1990年降為30%。除冶金排氣和粉塵之外,尾礦堆積3600×104 t以上,廢棄物6.8×108 t以上。淋濾產生的重金屬元素,沿金沙江而下,對水環境影響直至整個長江中下游,使地下水的硫酸鹽增高。
用能量色散X射線熒光分析技術研究該區重金屬環境污染是比較有利的。儀器採用小功率X光管和放射性同位素為激發源,以(Si-PIN)為探測器的1024道能譜儀,分析Cr、Ni、Cu、Zn、Pb、As、Ti、V等。
2000年,在攀枝花900 km2內系統採集土壤樣品。其中A層深0~5 cm;B層15~25 cm;C層30~50 cm;D層大於50 cm。
土壤中重金屬元素含量如表10-9-1所示。
表10-9-1 土壤中重金屬元素統計值(mg/kg)
根據重元素的富集因子值進行分級。富集因子表示為樣品中某污染元素和背景值中間類元素含量之比:
核輻射場與放射性勘查
式中:Ci為元素i的濃度值,Cin為標准樣品元素i濃度值。
根據富集因子數值大小,Sutherland將元素的污染程度分為五個等級(表10-9-2)。根據表10-9-1的元素值,按照表10-9-2的分級原則得出各元素的污染分布圖。以砷和鉛污染為例,示於圖10-9-1。
表10-9-2 富集因子值與分級
可見砷的污染是比較嚴重的,文化商業區[5]位於冶金區[4]的下游,砷污染富集最嚴重。
2002年,系統採集了本區大小21條河流水系沉積物及河流沉積物樣品。分析結果列於表10-9-3。各種途徑進入水體的重金屬視條件變化,有時由沉積轉為水體懸浮物,或由懸浮物轉為沉積物。
圖10-9-1 金沙江局部地區砷與鉛濃度分布圖
Muller於1997年提出地質累積指數,用以評價污染程度:
核輻射場與放射性勘查
式中:Cn為細粒(<100目)樣品中元素n的含量;CBE,n為平均n元素的背景值(一般取全球頁岩平均含量)。地質指數可分為七個級別,如表10-9-4所列。
在攀枝花地區按水系沉積物中7個元素含量,劃分出污染程度圖。現舉其中砷和鉛為例示於圖10-9-2。
表10-9-3 水系沉積物樣品的測試結果
表10-9-4 根據地質指數劃分污染級別
圖10-9-2 釩、砷濃度分布
2.實例二
城市大氣污染物,一般以顆粒物或氣溶膠形式存在。大氣污染物的測量,一般使用空氣取樣器,抽取一定量的空氣,使沉積物在濾紙上;可以直接使用放射性同位素激發源(如3×109Bq109Cd),使用Si(Li)或其他低能半導體探測器的多道X射線譜儀,進行測量。如圖10-9-3所示,為濾紙上收集元素的特徵X射線譜。根據譜線可以分析空氣中S、K、Ca、Ti、V、Mn、Fe、Ni、Cu、Zn、Br、Sr和Pb等多種元素。其中很多元素的檢出限可達10ng/cm2量級。
葡萄牙某大學用輕便X射線熒光儀,用55Fe為激發源和充氣正比閃爍計數器(GPSC),其解析度為11.8%;對煤中硫含量進行測量,檢出限0.15%。硫含量和其特徵X射線計數率呈線性關系,速度快。
圖10-9-3 空氣中顆粒物X射線譜
G. 大氣污染的常規監測和分析
遙感技術的發展與應用,為進行大范圍的環境質量評價開辟了新的途徑。尤其是彩紅外和熱紅外航空遙感圖像可以從不同的側面比較好地反映出某一地區面狀的環境質量的好壞。由於遙感技術是一門新興的綜合性探測技術,目前仍處在不斷完善的階段,它在定量分析評價環境質量上還有一定的困難,因而需通過少量的常規環境監測,並使之與遙感技術相結合,以建立起常規監測定量數據與遙感數據相應的關系,結合植物波譜測試的結果來綜合分析評價區域的環境質量。這樣就可以取得比較客觀、全面和准確的評價結果。
在礦區,主要大氣污染是顆粒煙塵、SO2和NOx,宜用綜合指數來評定大氣的質量,其計算公式如下:
工礦區環境動態監測與分析研究
式中:I綜為大氣質量綜合指數;
Ii為單一污染指數,且
Ci為污染物日均濃度值;
Si為污染物質量標准;
Imax為最大的單一污染指數;
n為參與計算的污染指數個數。
計算公式(3-6)既能比較客觀、全面地反映區域常年的大氣質量狀況,也能突出反映重污染指數的影響。
大氣質量的綜合指數等級標准可參照國家的有關規定。一般劃分為清潔、輕污染、中等污染、重污染和極重污染等五級。
H. 監測環境污染的報警是什麼
在南方一些城市的綠化樹種中,雪松很受大家喜愛,它樹姿優美,常年碧綠。有一次南京市發現某個地段雪松針葉發黃、枯焦,後來查明,這是附近工廠排放二氧化硫和氟化氫所引起的,因為雪松對這兩種氣體特別敏感。現在人們一見雪松針葉呈現這種症狀,就能很快找出二氧化硫和氟化氫的污染源,人們已把雪松作為一個很好的監測大氣污染的報警器。
I. 什麼是環境污染的「監測員」
奼紫嫣紅,滿園鮮花;青松、翠竹,綠海無涯。在植物這個奇妙的王國里,還有些植物具有神奇的指示作用。如果你稍加留意的話,就可以發現一個有趣的現像:牽牛花的顏色早晨為藍色,而到了下午卻變成了紅色。這是為什麼呢?因為牽牛花中含有花青素,這種色素具有魔術師般的本領,當遇鹼性時為藍色,而遇酸性時又變為紅色。隨著一天從早晨到晚上空氣中二氧化碳濃度的增加,牽牛花對它的吸收量也逐漸增加,花朵中的酸性也不斷提高,從而造成牽牛花的顏色由藍變紅。由此可見,牽牛花對空氣中的二氧化碳的含量具有指示作用,所以稱這類植物為「指示植物」。
隨著人類對原子能的廣泛利用,輻射危害也日益受到人們的重視。有一種叫紫鴨跖草的植物,它的花為藍色,但受到低強度的輻射後,花色即由藍變為粉紅色,所以紫鴨跖草是測量輻射強度的指示植物。
利用指示植物還可以監測環境污染的情況。比如,在綠化樹種中,樹姿優美、常年碧綠的雪松,對二氧化硫和氟化氫很敏感,若空氣中有這兩種氣體存在時,它的針葉就會出現發黃變枯現像。因此,當見到雪松針葉枯黃時,在其周圍地區往往可以找到排放二氧化硫和氟化氫的污染源。又如,唐菖蒲(劍蘭)對氟化氫反應十分敏感,當大氣中氟化氫濃度超過環境衛生標准(百萬分之0.001)15倍時,24小時後便會出現受害症狀,首先在葉尖和葉緣出現油浸狀褪色帶,漸漸枯黃,再變成昭褐色。因此,唐富蒲是監測大氣中氟化氫污染的特靈花卉。
科學家研究發現,高大的喬木、低矮的灌木和眾多的花草,以及苔蘚、地衣等一些低等植物,都可以作為監測環境污染的指示植物。它們是忠實可靠的「監測員」和「報警器」,在空間的不同層次組成了龐大的監測網。這些植物是:紫花苗蓿、雪松、日本落葉松、核桃、向日葵、灰萊、胡蘿卜、菠菜、芝麻、梔子花等,可監測二氧化硫。
鬱金香、落葉杜鵑、大葉黃楊、桃、杏、草萄、唐葛蒲等,可監測氟化氫。
海棠、蘋果、山桃、毛櫻桃、小葉黃楊、油松、連翹、玉米、洋蔥等可監測氟化氫。
女貞、樟樹、丁香、牡丹、紫玉蘭,垂柳、皂英、葡萄、苜蓿等可監測臭氧。
向日葵、杜鵑、石榴等可監測氧化氮。
矮牽牛、煙草、早熟禾等可監測光化學煙霧。
此外,落葉松可監測氯化氫;柳樹、女貞可監測汞;紫鴨跖草可監測放射性物質。
那麼,指示植物為何能監測環境污染呢?因為不同植物在生理上存在著特異性,故對不同的污染物質,表現出的反應和敏感性也不一樣,受害後出現的症狀各異。當大氣受到二氧化硫、氟化氫、氯氣等污染時,這些有害氣體可以通過葉片上的氣孔進入到植物體內,受害的部位首先是葉片,葉片會出現各種傷斑,不同的有害氣體所引起的傷斑也不一樣。二氧化硫進入植物體內,傷斑往往出現在葉脈間,呈點狀和塊狀,顏色變成白色或淺褐色;氯能很快地破壞葉綠素,使葉片產生褪色傷斑,嚴重時甚至全葉漂白脫落;光化學煙霧含有各種氧化能力極強的物質,可使葉片背面變成銀白色、棕色、古銅色或玻璃狀,葉片正面出現一道橫貫全葉的壞死帶,嚴重時整片葉子變色,很少發生點狀和塊狀傷斑;二氧化氮,使葉脈間和近葉緣處,出現不規則的白色或棕色解體傷斑;臭氧往往使葉片表面出現黃褐色或棕褐色斑點;氟引起的傷斑大多集中在葉尖和葉的邊緣,呈環狀和帶狀。指示植物不僅能告訴人們大氣受到哪種有害氣體的污染,同時還能粗略地反映出污染程度的大小。所以人們稱贊這些植物是保護環境的「監測員」。根據監測結果,即可採取有效治理措施。
利用指示植物監測環境污染有以下優點:
1.比使用儀器成本低,方法簡單,使用方便,預報及時,適於開展群眾性監測活動。在工廠的四周栽種上一些指示植物,既可監測污染,又美化了環境,一舉兩得。例如,一家工廠根據植物的受害症狀,發現了管道漏氣事故,就可以及時採取有效措施。
2.對污染很敏感,在人還未感覺到,甚至連儀器還測試不出來的時候,一些植物卻出現了明顯的受害症狀——或花朵變色,或葉呈斑點,或枝葉枯黃,等。例如,大氣中二氧化硫的濃度達到百萬分之一~百萬分之五時,人才能聞到氣味,濃度為百萬分之十一百萬分之五時,才對人有明顯的刺激作用;但對二氧化硫敏感的植物,在濃度為百萬分之零點三時,就會出現明顯的反應——在7小時內就會出現受害症狀。又如,氟的濃度在百萬分之八時,才開始對人體有害;而當氟的濃度為百萬分之零點零零五時,敏感植物菖蘭就會出現受害症狀。
3.植物不僅能監測現時的污染,而且還能指示過去的污染情況。比如,根據一些樹木年生長量的變化(從樹乾的年輪來測定),估測過去30年中大氣污染的程度,結果相當准確。而這些,用一般儀器是測不出來的。
J. 什麼是城市空氣污染監測
由於許多城市的空氣污染在不斷加劇,居民開始關心與他們健康息息相關的大氣環境,於是城市空氣質量預報應運而生。預報是根據空氣污染指數來定量地客觀評價空氣質量的優劣,而指數則是根據對若干種主要污染物的監測數據並參照一定的分級標准而制定的,這也是空氣質量評定的「數字化」。主要污染物的選取雖然不盡相同,但SO2、NO2和顆粒含量這三項是不可或缺的,前面已講過這三種污染物的來源和對人體的危害。環境空氣監測採用自動監測系統進行連續監測,如每4分鍾測得一組監測數據,然後計算出每天的平均值再加以分級公布。最優秀的為一級,這在一般城市中是罕見的,只有在自然保護區或風景名勝區中才能遇到;二級為優秀級,指數不大於50;三級為良好級,指數不大於100,一般居民區和商業區應在此范圍內,但現實情況往往超標:四級表示輕度污染,指數不大於200,人群中可出現刺激症狀:五級是中度污染,指數不大於300;五級以外為重度污染,指數大於300,此時人們應留在室內,避免外出。但此種預報和天氣預報一樣,並非完全准確,也不一定符合於一個大城市中的某一特定區域,而且預報有時偏於樂觀,所以只能作為參考。