太陽能的污染
Ⅰ 太陽能會不會污染環境
雖然太陽能在工作的抄時候不會污染環境,但是太陽能在生產製造過程中,對環境的污染很大。比如太陽能的原材料是多晶硅,加工太陽能電池片的時候會排放三氯氫硅,三氯氫硅對環境的污染也是很大的。還會產生四氯化硅,這些對人的身體是很有害的,如果企業為了省事節約生產成本或者回收工藝不成熟的話,流入環境後果不堪設想。
太陽能是一個完整的發電放電的系統,所以它還有很多零配件,其中污染環境最嚴重的就是蓄電池,如果報廢的蓄電池沒能經過回收就丟棄在外面的話,可以對局部的環境造成很嚴重的污染。
世界上沒有絕對的清潔能源,
太陽能也是工業品,它本身也在污染環境。
Ⅱ 太陽能電池中的污染物質:光伏有多危險
晶硅太陽能電池本身沒有污染,但是生產過程污染嚴重,薄膜電池中晶硅也沒有污染,銅銦鎵硒也沒有毒,就是碲化鎘有中鎘有毒,但是電池中鎘是離子態,毒性小。生產商的員工的尿樣中檢測出的鎘含量也是安全的。
Ⅲ 聽說太陽能企業有污染,不知道有哪些污染
生產電板企業的污染基本沒有,因這這僅是一個物理加在過程;關鍵在於生產電板的材版料多晶硅的生產權有污染,因為這是一個化學反應過程。主要污染是:
多晶硅核心技術——三氯氫硅還原法壟斷在美國、德國、日本等六七家企業手中,中國企業很難獲得關鍵技術。生產多晶硅是一個提純過程,金屬硅轉化成三氯氫硅,再用氫氣進行一次性還原,這個過程中約有25%的三氯氫硅轉化為多晶硅,其餘大量進入尾氣,同時形成副產品——四氯化硅,每生產一噸多晶硅,就產生4噸以上的四氯化硅廢液。在這個過程中,如果回收工藝不成熟,三氯氫硅、四氯化硅、氯化氫、氯氣等有害物質極有可能外溢,存在重大的安全和污染隱患。四氯化硅一遇潮濕空氣即分解成硅酸和劇毒氣體氯化氫,對人體眼睛、皮膚、呼吸道有強刺激性,遇火星會爆炸;氯氣的外逸則可以使人出現咳嗽、頭暈、胸悶等病狀,並導致農作物大面積減產和絕收。
這個回答滿意嗎?
Ⅳ 太陽能有什麼環保作用
好處:
1.普遍性。
太陽光照射的面積散布在地球大部分角落,僅差入射角不同而造成的光能有異,但至少不會被少數國家或地區壟斷,造成無謂的能源危機。
2.永久性。
太陽的能量極其龐大,科學家計算出至少有六百萬年的期限,對於人類而言,這樣的時間可謂是無限。
3.無污染性。
現今使用最多的礦物能源,其滋生的問題不外是廢物的處理,物體不滅,能源耗竭越多,產生污染也相對增加,太陽能則無危險性及污染性。在人類與自然和平共處的原則下,使用太陽能最不傷和氣,且若設備使用得當,裝置成後所需費用極少,而每年至少可生十的十七次方千瓦的電力。
煤炭、石油等礦物燃料產生的有害氣體和廢渣,而使用太陽能時不會帶來污染,不會排放出任何對環境不良影響的物質,是一種清潔的能源。當然,大量使用太陽能之後,由於太陽能的充分利用,結果會使環境的溫度稍微升高,但這種溫升,不致對環境造成不良影響。
4.太陽能是人類可以利用的最豐富的能源。
據估計,在過去漫長的十一億年當中,太陽只消耗了它本身能量的2%,今後數十億年太陽也不會發生明顯的變化,所以太陽可以作為人類永久性的能源,取之不盡、用之不竭。它給地面照射15分鍾的能量,就足夠全世界使用一年。
5.太陽能安全可性。
核能發電會有核泄漏的危險,一旦核泄漏了便會造成極大的生態危機,而太陽能絕對沒有這種情況,是十分可靠的。
不利:
1.穩定性差。
太陽能受氣候、晝夜的影響很大,到達極不恆定。因此必須有貯存裝置,這不僅增加了技術上的困難,也使造價增加。目前雖然已經製成多種貯存系統,但總是不夠理想,具體應用也有一定困難。
2.裝置成本過高。
雖然到達整個地面太陽能非常巨大,但這種能量非常分散,作為能源,它的密度太低了。因此,太陽能的利用裝置必須具有相當大的面積,才能收集到足夠的功率。但是,面積大,造價就會高。只有當採集能量裝置表面的單位造價相當便宜時,才能經濟合算的使用這太陽能利用器。
3.有人針對太陽能的污染問題提出「目視污染」,意即龐大的太陽能收集器造成視覺上的污染,有此一說。
Ⅳ 光伏企業有哪些污染
多晶硅提純環節的化學污染,三氯氫硅等
切片環節的酸鹼、污水及金屬污染
電池環節的酸鹼等污染
Ⅵ 生產太陽能硅板有什麼污染,對周圍環境污染大么有沒有高手告訴下謝謝,
首先原硅抄料的提取不論是襲硅烷法還是西門子法或者改進西門子法都無法從根本上降低污染,要用大量天然氣等可燃氣體。而且生成物會有一氧化碳和粉塵,其次,硅錠生產會用大量的電和粉塵,電池組件生產的粘結膠是硅膠會對人產生有害氣體直接接觸會有皮膚癌的危險,電池板的焊接會用焊接機焊接輔助劑回高溫產生硫化物。還有組件生產會有高溫高耗能。這個也是勞動力密集型產業
Ⅶ 太陽能對環境的影響
太陽能電池及材料研究
--------------------------------------------------------------------------------
0 引言
太陽能是人類取之不盡用之不竭的可再生能源.也是清潔能源,不產生任何的環境污染。在太陽能的有效利用當中;大陽能光電利用是近些年來發展最快,最具活力的研究領域, 是其中最受矚目的項目之一。為此,人們研製和開發了太陽能電池。製作太陽能電池主要是以半導體材料為基礎,其工作原理是利用光電材料吸收光能後發生光電於轉換反應,根據所用材料的不同,太陽能電池可分為:1、硅太陽能電池;2、以無機鹽如砷化鎵III-V化合物、硫化鎘、銅銦硒等多元化合物為材料的電池;3、*Gong*能高分子材料制備的大陽能電池;4、納米晶太陽能電池等。不論以何種材料來製作電池,對太陽能電池材料一般的要求有:1、半導體材料的禁帶不能太寬;②要有較高的光電轉換效率:3、材料本身對環境不造成污染;4、材料便於工業化生產且材料性能穩定。基於以上幾個方面考慮,硅是最理想的太陽能電池材料,這也是太陽能電池以硅材料為主的主要原因。但隨著新材料的不斷開發和相關技術的發展,以其它村料為基礎的太陽能電池也愈來愈顯示出誘人的前景。本文簡要地綜述了太陽能電池的種類及其研究現狀,並討論了太陽能電池的發展及趨勢。
1 硅系太陽能電池
1.1 單晶硅太陽能電池
硅系列太陽能電池中,單晶硅大陽能電池轉換效率最高,技術也最為成熟。高性能單晶硅電池是建立在高質量單晶硅材料和相關的成熱的加工處理工藝基礎上的。現在單晶硅的電地工藝己近成熟,在電池製作中,一般都採用表面織構化、發射區鈍化、分區摻雜等技術,開發的電池主要有平面單晶硅電池和刻槽埋柵電極單晶硅電池。提高轉化效率主要是靠單晶硅表面微結構處理和分區摻雜工藝。在此方面,德國夫朗霍費費萊堡太陽能系統研究所保持著世界領先水平。該研究所採用光刻照相技術將電池表面織構化,製成倒金字塔結構。並在表面把一13nm。厚的氧化物鈍化層與兩層減反射塗層相結合.通過改進了的電鍍過程增加柵極的寬度和高度的比率:通過以上製得的電池轉化效率超過23%,是大值可達23.3%。Kyocera公司制備的大面積(225cm2)單電晶太陽能電池轉換效率為19.44%,國內北京太陽能研究所也積極進行高效晶體硅太陽能電池的研究和開發,研製的平面高效單晶硅電池(2cm X 2cm)轉換效率達到19.79%,刻槽埋柵電極晶體硅電池(5cm X 5cm)轉換效率達8.6%。
單晶硅太陽能電池轉換效率無疑是最高的,在大規模應用和工業生產中仍占據主導地位,但由於受單晶硅材料價格及相應的繁瑣的電池工藝影響,致使單晶硅成本價格居高不下,要想大幅度降低其成本是非常困難的。為了節省高質量材料,尋找單晶硅電池的替代產品,現在發展了薄膜太陽能電
池,其中多晶硅薄膜太陽能電池和非晶硅薄膜太陽能電池就是典型代表。
1.2 多晶硅薄膜太陽能電池
通常的晶體硅太陽能電池是在厚度350~450μm的高質量矽片上製成的,這種矽片從提拉或澆鑄的硅錠上鋸割而成。因此實際消耗的硅材料更多。為了節省材料,人們從70年代中期就開始在廉價襯底上沉積多晶硅薄膜,但由於生長的硅膜晶粒大小,未能製成有價值的太陽能電池。為了獲得大尺寸晶粒的薄膜,人們一直沒有停止過研究,並提出了很多方*fa*。目前制備多晶硅薄膜電池多採用化學氣相沉積*fa*,包括低壓化學氣相沉積(LPCVD)和等離子增強化學氣相沉積(PECVD)工藝。此外,液相外延*fa*(LPPE)和濺射沉積*fa*也可用來制備多晶硅薄膜電池。
化學氣相沉積主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,為反應氣體,在一定的保護氣氛下反應生成硅原子並沉積在加熱的襯底上,襯底材料一般選用Si、SiO2、Si3N4等。但研究發現,在非硅襯底上很難形成較大的晶粒,並且容易在晶粒間形成空隙。解決這一問題辦*fa*是先用 LPCVD在襯底上沉熾一層較薄的非晶硅層,再將這層非晶硅層退火,得到較大的晶粒,然後再在這層籽晶上沉積厚的多晶硅薄膜,因此,再結晶技術無疑是很重要的一個環節,目前採用的技術主要有固相結晶*fa*和中區熔再結晶*fa*。多晶硅薄膜電池除採用了再結晶工藝外,另外採用了幾乎所有制備單晶硅太陽能電池的技
術,這樣製得的太陽能電池轉換效率明顯提高。德國費萊堡太陽能研究所採用區館再結晶技術在FZ Si襯底上製得的多晶硅電池轉換效率為19%,日本三菱公司用該*fa*制備電池,效率達16.42%。
液相外延(LPE)*fa*的原理是通過將硅熔融在母體里,降低溫度析出硅膜。美國Astropower公司採用LPE制備的電池效率達12.2%。中國光電發展技術中心的陳哲良採用液相外延*fa*在冶金級矽片上生長出硅晶粒,並設計了一種類似於晶體硅薄膜太陽能電池的新型太陽能電池,稱之為「硅粒」太陽能電池,但有關性能方面的報道還未見到。
多晶硅薄膜電池由於所使用的硅遠較單晶硅少,又無效率衰退問題,並且有可能在廉價襯底材料上制備,其成本遠低於單晶硅電池,而效率高於非晶硅薄膜電池,因此,多晶硅薄膜電池不久將會在太陽能電地市場上占據主導地位。
1.3 非晶硅薄膜太陽能電池
開發太陽能電池的兩個關鍵問題就是:提高轉換效率和 降低成本。由於非晶硅薄膜太陽能電池的成本低,便於大規模生產,普遍受到人們的重視並得到迅速發展,其實早在70年代初,Carlson等就已經開始了對非晶硅電池的研製工作,近幾年它的研製工作得到了迅速發展,目前世界上己有許多
家公司在生產該種電池產品。
非晶硅作為太陽能材料盡管是一種很好的電池材料,但由於其光學帶隙為1.7eV, 使得材料本身對太陽輻射光譜的長波區域不敏感,這樣一來就限制了非晶硅太陽能電池的轉換效率。此外,其光電效率會隨著光照時間的延續而衰減,即所謂的光致衰退S一W效應,使得電池性能不穩定。解決這些問題的這徑就是制備疊層太陽能電池,疊層太陽能電池是由在制備的p、i、n層單結太陽能電池上再沉積一個或多個P-i-n子電池製得的。疊層太陽能電池提高轉換效率、解決單結電池不穩定性的關鍵問題在於:①它把不同禁帶寬度的材科組台在一起,提高了光譜的響應范圍;②頂電池的i層較薄,光照產生的電場強度變化不大,保證i層中的光生載流子抽出;③底電池產生的載流子約為單電池的一半,光致衰退效應減小;④疊層太陽能電池各子電池是串聯在一起的。
非晶硅薄膜太陽能電池的制備方*fa*有很多,其中包括反應濺射*fa*、PECVD*fa*、LPCVD*fa*等,反應原料氣體為H2稀釋的SiH4,襯底主要為玻璃及不銹鋼片,製成的非晶硅薄膜經過不同的電池工藝過程可分別製得單結電池和疊層太陽能電池。目前非晶硅太陽能電池的研究取得兩大進展:第一、三疊層結構非晶硅太陽能電池轉換效率達到13%,創下新的記錄;第二.三疊層太陽能電池年生產能力達5MW。美國聯合太陽能公司(VSSC)製得的單結太陽能電池最高轉換效率為9.3%,三帶隙三疊層電池最高轉換效率為13%,
上述最高轉換效率是在小面積(0.25cm2)電池上取得的。曾有文獻報道單結非晶硅太陽能電池轉換效率超過12.5%,日本中央研究院採用一系列新措施,製得的非晶硅電池的轉換效率為13.2%。國內關於非晶硅薄膜電池特別是疊層太陽能電池的研究並不多,南開大學的耿新華等採用工業用材料,以鋁背電極制備出面積為20X20cm2、轉換效率為8.28%的a-Si/a-Si疊層太陽能電池。
非晶硅太陽能電池由於具有較高的轉換效率和較低的成本及重量輕等特點,有著極大的潛力。但同時由於它的穩定性不高,直接影響了它的實際應用。如果能進一步解決穩定性問題及提高轉換率問題,那麼,非晶硅大陽能電池無疑是太陽能電池的主要發展產品之一。
2 多元化合物薄膜太陽能電池
為了尋找單晶硅電池的替代品,人們除開發了多晶硅、非晶硅薄膜太陽能電池外,又不斷研製其它材料的太陽能電池。其中主要包括砷化鎵III-V族化合物、硫化鎘、硫化鎘及銅錮硒薄膜電池等。上述電池中,盡管硫化鎘、碲化鎘多晶薄膜電池的效率較非晶硅薄膜太陽能電池效率高,成本較單晶硅電池低,並且也易於大規模生產,但由於鎘有劇毒,會對環境造成嚴重的污染,因此,並不是晶體硅太陽能電池最理想的替代
砷化鎵III-V化合物及銅銦硒薄膜電池由於具有較高的轉換效率受到人們的普遍重視。GaAs屬於III-V族化合物半導體材料,其能隙為1.4eV,正好為高吸收率太陽光的值,因此,是很理想的電池材料。GaAs等III-V化合物薄膜電池的制備主要採用 MOVPE和LPE技術,其中MOVPE方*fa*制備GaAs薄膜電池受襯底位錯、反應壓力、III-V比率、總流量等諸多參數的影響。
除GaAs外,其它III-V化合物如Gasb、GaInP等電池材料也得到了開發。1998年德國費萊堡太陽能系統研究所製得的GaAs太陽能電池轉換效率為24.2%,為歐洲記錄。首次制備的GaInP電池轉換效率為14.7%.見表2。另外,該研究所還採用堆疊結構制備GaAs,Gasb電池,該電池是將兩個獨立的電池堆疊在一起,GaAs作為上電池,下電池用的是Gasb,所得到的電池效率達到31.1%。
銅銦硒CuInSe2簡稱CIC。CIS材料的能降為1.leV,適於太陽光的光電轉換,另外,CIS薄膜太陽電池不存在光致衰退問題。因此,CIS用作高轉換效率薄膜太陽能電池材料也引起了人們的注目。
CIS電池薄膜的制備主要有真空蒸鍍*fa*和硒化*fa*。真空蒸鍍*fa*是採用各自的蒸發源蒸鍍銅、銦和硒,硒化*fa*是使用H2Se疊層膜硒化,但該*fa*難以得到組成均勻的CIS。CIS薄膜電池從80年代最初8%的轉換效率發展到目前的15%左右。日本松下電氣工業公司開發的摻鎵的CIS電池,其光電轉換效率為15.3%(面積1cm2)。1995年美國可再生能源研究室研製出轉換效率為17.l%的CIS太陽能電池,這是迄今為止世界上該電池的最高轉換效率。預計到2000年CIS電池的轉換效率將達到20%,相當於多晶硅太陽能電池。
CIS作為太陽能電池的半導體材料,具有價格低廉、性能良好和工藝簡單等優點,將成為今後發展太陽能電池的一個重要方向。唯一的問題是材料的來源,由於銦和硒都是比較稀有的元素,因此,這類電池的發展又必然受到限制。
3 聚合物多層修飾電極型太陽能電池
在太陽能電池中以聚合物代替無機材料是剛剛開始的一個太陽能電池制爸的研究方向。其原理是利用不同氧化還原型聚合物的不同氧化還原電勢,在導電材料(電極)表面進行多層復合,製成類似無機P-N結的單向導電裝置。其中一個電極的內層由還原電位較低的聚合物修飾,外層聚合物的還原電位較高,電子轉移方向只能由內層向外層轉移;另一個電極的修飾正好相反,並且第一個電極上兩種聚合物的還原電位均高於後者的兩種聚合物的還原電位。當兩個修飾電極放入含有光敏化劑的電解波中時.光敏化劑吸光後產生的電子轉移到還原電位較低的電極上,還原電位較低電極上積累的電子不能向外層聚合物轉移,只能通過外電路通過還原電位較高的電極回到電解液,因此外電路中有光電流產生。
由於有機材料柔性好,製作容易,材料來源廣泛,成本底等優勢,從而對大規模利用太陽能,提供廉價電能具有重要意義。但以有機材料制備太陽能電池的研究僅僅剛開始,不論是使用壽命,還是電池效率都不能和無機材料特別是硅電池相比。能否發展成為具有實用意義的產品,還有待於進一步研究探索。
4 納米晶化學太陽能電池
在太陽能電池中硅系太陽能電池無疑是發展最成熟的,但由於成本居高不下,遠不能滿足大規模推廣應用的要求。為此,人們一直不斷在工藝、新材料、電池薄膜化等方面進行探索,而這當中新近發展的納米TiO2晶體化學能太陽能電池受到國內外科學家的重視。
自瑞士Gratzel教授研製成*Gong*納米TiO2化學大陽能電池以來,國內一些單位也正在進行這方面的研究。納米晶化學太陽能電池(簡稱NPC電池)是由一種在禁帶半導體材料修飾、組裝到另一種大能隙半導體材料上形成的,窄禁帶半導體材料採用過渡金屬Ru以及Os等的有機化合物敏化染料,大能隙半導體材料為納米多晶TiO2並製成電極,此外NPC電池還選用適當的氧化一還原電解質。納米晶TiO2工作原理:染料分子吸收太陽光能躍遷到激發態,激發態不穩定,電子快速注入到緊鄰的TiO2導帶,染料中失去的電子則很快從電解質中得到補償,進入TiO2導帶中的電於最終進入導電膜,然後通過外迴路產生光電流。
納米晶TiO2太陽能電池的優點在於它廉價的成本和簡單的工藝及穩定的性能。其光電效率穩定在10%以上,製作成本僅為硅太陽電池的1/5~1/10.壽命能達到2O年以上。但由於此類電池的研究和開發剛剛起步,估計不久的將來會逐步走上市場。
5 太陽能電池的發展趨勢
從以上幾個方面的討論可知,作為太陽能電池的材料,III-V族化合物及CIS等系由稀有元素所制備,盡管以它們製成的太陽能電池轉換效率很高,但從材料來源看,這類太陽能電池將來不可能占據主導地位。而另兩類電池納米晶太陽能電池和聚合物修飾電極太陽能電地存在的問題,它們的研究剛剛起步,技術不是很成熟,轉換效率還比較低,這兩類電池還處於探索階段,短時間內不可能替代應系太陽能電池。因此,從轉換效率和材料的來源角度講,今後發展的重點仍是硅太陽能電池特別是多晶硅和非晶硅薄膜電池。由於多晶硅和非晶硅薄膜電池具有較高的轉換效率和相對較低的成本,將
最終取代單晶硅電池,成為市場的主導產品。
提高轉換效率和降低成本是太陽能電池制備中考慮的兩個主要因素,對於目前的硅系太陽能電池,要想再進一步提高轉換效率是比較困難的。因此,今後研究的重點除繼續開發新的電池材料外應集中在如何降低成本上來,現有的高轉換效率的太陽能電池是在高質量的矽片上製成的,這是製造硅太陽能電池最費錢的部分。因此,在如何保證轉換效率仍較高的情況下來降低襯底的成本就顯得尤為重要。也是今後太陽能電池發展急需解決的問題。近來國外曾採用某些技術製得硅條帶作為多晶硅薄膜太陽能電池的基片,以達到降低成本的目的,效果還是比較現想的。
Ⅷ 太陽能發電污染環境的嗎
太陽發電的所有設備製造過程中污染環境,大面積使用中也會出現光污染或局部地面或空氣溫度異常的情況
Ⅸ 太陽能,風能等清潔能源真的一點污染都沒有嗎
這要看你從什麼角度去看。例如太陽能,生產太陽能用的光伏板對環境的損壞就不小。版其次太陽能需要陽光權,自然就會遮擋其他地方的陽光。再如風能,大量的風電漿葉需要消耗風速。對一些地方需要靠風帶走的系統肯定是有影響的。例如植物種子,原風速可以送到幾里以外,由於風速降低只送到其他地方,這就改變了原有生態。
自然,是一套系統。只要是人為改變,總會對環境有些影響。至於影響的好與壞,可能不是簡單能說清的。