生物信息學服務
發布時間: 2020-12-09 23:08:06
A. 求助一個關於生物信息學服務器的問題
生物信息學中數學佔了很大的比重。統計學,包括多元統計學,是生物信息學的數學基礎之一;概率論與隨機過程理論,如隱馬爾科夫鏈模型(HMM),在生物信息學中有重要應用;其他如用於序列比對的運籌學;蛋白質空間結構預測和分子對接研究中採用的最優化理論;研究DNA超螺旋結構的拓撲學;研究遺傳密碼和DNA序列的對稱性方面的群論等等.總之,各種數學理論或多或少在生物學研究中起到了相應的作用.但並非所有的數學方法在引入生物信息學中都能普遍成立的,以下以統計學和度量空間為例來說明. Simond在人類的認知一書中指出,人在解決問題時,一般並不去尋找最優的方法,而只要求找到一個滿意的方法.因為即使是解決最簡單的問題,要想得到次數最少,效能最高的解決方法也是非常困難的.最優方法和滿意方法之間的困難程度相差很大,後者不依賴於問題的空間,不需要進行全部搜索,而只要能達到解決的程度就可以了.正如前所述,面對大規模的序列和蛋白質結構數據集,要獲得全局結果,往往是即使演算法復雜度為線性時也不能夠得到好的結果,因此,要通過變換解空間或不依賴於問題的解空間獲得滿意解,生物信息學仍需要人工智慧和認知科學對人腦的進一步認識,並從中得到更好的啟發式方法.
熱點內容