監督學習
① 監督學習和無監督學習之間有沒有界限
目標是我們不告訴計算機怎麼做,而是讓它(計算機)自己去學習怎樣做一些事情。非監督學習一般有兩種思路。第一種思路是在指導Agent時不為其指定明確的分類,而是在成功時採用某種形式的激勵制度。需要注意的是,這類訓練通常會置於決策問題的框架里,因為它的目標不是產生一個分類系統,而是做出最大回報的決定。這種思路很好的概括了現實世界,Agent可以對那些正確的行為做出激勵,並對其他的行為進行處罰。
強化學習的一些形式常常可以被用於非監督學習,由於沒有必然的途徑學習影響世界的那些行為的全部信息,因此Agent把它的行為建立在前一次獎懲的基礎上。在某種意義上,所有的這些信息都是不必要的,因為通過學習激勵函數,Agent不需要任何處理就可以清楚地知道要做什麼,因為它(Agent)知道自己採取的每個動作確切的預期收益。對於防止為了計算每一種可能性而進行的大量計算,以及為此消耗的大量時間(即使所有世界狀態的變遷概率都已知),這樣的做法是非常有益的。另一方面,在嘗試出錯上,這也是一種非常耗費時間的學習。
不過這一類學習可能會非常強大,因為它假定沒有事先分類的樣本。在某些情況下,例如,我們的分類方法可能並非最佳選擇。在這方面一個突出的例子是Backgammon(西洋雙陸棋)游戲,有一系列計算機程序(例如neuro-gammon和TD-gammon)通過非監督學習自己一遍又一遍的玩這個游戲,變得比最強的人類棋手還要出色。這些程序發現的一些原則甚至令雙陸棋專家都感到驚訝,並且它們比那些使用預分類樣本訓練的雙陸棋程序工作得更出色。
一種次要的非監督學習類型稱之為聚合(clustering)。這類學習類型的目標不是讓效用函數最大化,而是找到訓練數據中的近似點。聚合常常能發現那些與假設匹配的相當好的直觀分類。例如,基於人口統計的聚合個體可能會在一個群體中形成一個富有的聚合,以及其他的貧窮的聚合。
② 「有監督學習」和「監督學習」分別是什麼
1、監督式學習(Supervised learning),是一個機器學習中的方法,可以由訓練資料中學到或建立一個模式( learning model),並依此模式推測新的實例。訓練資料是由輸入物件(通常是向量)和預期輸出所組成。函數的輸出可以是一個連續的值(稱為回歸分析),或是預測一個分類標簽(稱作分類)。
個監督式學習者的任務在觀察完一些訓練範例(輸入和預期輸出)後,去預測這個函數對任何可能出現的輸入的值的輸出。要達到此目的,學習者必須以"合理"(見歸納偏向)的方式從現有的資料中一般化到非觀察到的情況。在人類和動物感知中,則通常被稱為概念學習(concept learning)。
2、無監督式學習(Unsupervised Learning )是人工智慧網路的一種演算法(algorithm),其目的是去對原始資料進行分類,以便了解資料內部結構。
有別於監督式學習網路,無監督式學習網路在學習時並不知道其分類結果是否正確,亦即沒有受到監督式增強(告訴它何種學習是正確的)。其特點是僅對此種網路提供輸入範例,而它會自動從這些範例中找出其潛在類別規則。當學習完畢並經測試後,也可以將之應用到新的案例上。
無監督學習里典型的例子就是聚類了。聚類的目的在於把相似的東西聚在一起,而我們並不關心這一類是什麼。因此,一個聚類演算法通常只需要知道如何計算相似度就可以開始工作了。
③ 監督學習的神經網路是啥意思!
用樣本去訓練一個BP網路,然後用新的樣本作為輸入,再通過這個已經訓練好的BP網路,得到的數據就是模擬的結果,這就是BP網路模擬。我們訓練一個BP網路就好像是在訓練一個神經系統,然後用這個已經具備分析能力的神經系統去分析事情,這就是為什麼要模擬,說到底就是為了用。模擬的作用你可以從BP神經網路的用途上去看,例如很經典的可以用來做分類器等。你用不同類別的樣本(輸入+對應的期望輸出)作為訓練,然後給出一個新的輸入,BP網就能給你這個所屬的類別。
④ 有沒有一個可以監督學習的軟體求分享
自製力比較好的,建議用個鬧鍾提醒就完事兒了!
自製力比較差的可以試試三方平內台。雖然是軟體,但是同容於其他監督軟體的是,這種軟體是根據你的需求去尋找另外的人監督你。 你可能會花個1塊2塊的發個任務、目標,然後另外的人監督你,根據你的需求幫助你去完成此次目標。 推薦:達目標APP、來監督APP
建議一點:不要過多依靠這種外力,還是需要多培養自己的自製力。加油喲!
⑤ 自我學習,監督學習,半監督學習和遷移學習的區別
自我學習和半監督學習一樣,當前手頭上只有少量訓練樣本,但是周圍手頭上還有版大量無標注樣本。舉一權個經典的例子,分離大象和犀牛。對於監督學習來說,我們手頭有大量大象的樣本和犀牛的樣本,接下來訓練分類器,進行分類,大家都知道的。對於遷移學習,則是指我們手頭上有大量羊的樣本和馬的樣本(已標記),少量的大象和犀牛的樣本,接下來就要從羊和馬的樣本中選出有效的樣本分別加入到大象和犀牛的標記樣本中,然後再用監督學習的方法訓練分類器。而非監督學習,則是手上僅有少量大象和犀牛的已標記樣本,另外有一堆大象和犀牛的沒有標記的數據(注意它們中要麼是大象要麼是犀牛,沒有其他物種)。半監督學習就是利用這些樣本訓練分類器,實現分類。而自我學習,同樣是手上僅有少量大象和犀牛的已標記樣本,另外有一大堆自然圖像。所謂自然圖像,就是有大象和犀牛的圖片,還有各種其他物種的圖片。自我學習比半監督學習更適合實際場景—–哪有一堆只有大象和犀牛的圖片給你呢?而自然圖像的來源更加廣泛,可以從互聯網上隨便下載。 轉載網路。
⑥ 機器學習 一 監督學習和無監督學習的區別
機器學習的常用方法,主要分為有監督學習(supervised learning)和無監督學習(unsupervised learning)。
監督學習,就是人們常說的分類,通過已有的訓練樣本(即已知數據以及其對應的輸出)去訓練得到一個最優模型(這個模型屬於某個函數的集合,最優則表示在某個評價准則下是最佳的),再利用這個模型將所有的輸入映射為相應的輸出,對輸出進行簡單的判斷從而實現分類的目的,也就具有了對未知數據進行分類的能力。在人對事物的認識中,我們從孩子開始就被大人們教授這是鳥啊、那是豬啊、那是房子啊,等等。我們所見到的景物就是輸入數據,而大人們對這些景物的判斷結果(是房子還是鳥啊)就是相應的輸出。當我們見識多了以後,腦子里就慢慢地得到了一些泛化的模型,這就是訓練得到的那個(或者那些)函數,從而不需要大人在旁邊指點的時候,我們也能分辨的出來哪些是房子,哪些是鳥。監督學習里典型的例子就是KNN、SVM。
無監督學習(也有人叫非監督學習,反正都差不多)則是另一種研究的比較多的學習方法,它與監督學習的不同之處,在於我們事先沒有任何訓練樣本,而需要直接對數據進行建模。這聽起來似乎有點不可思議,但是在我們自身認識世界的過程中很多處都用到了無監督學習。比如我們去參觀一個畫展,我們完全對藝術一無所知,但是欣賞完多幅作品之後,我們也能把它們分成不同的派別(比如哪些更朦朧一點,哪些更寫實一些,即使我們不知道什麼叫做朦朧派,什麼叫做寫實派,但是至少我們能把他們分為兩個類)。無監督學習里典型的例子就是聚類了
⑦ 我知道有監督學習,半監督學習,那麼什麼是弱監督學習
三種弱監督類型:不完全監督,即只有一部分樣本有標簽;不確切監督,即訓練樣本只有粗粒度的標簽;以及不準確監督,即給定的標簽不一定總是真值。
⑧ 監督學習是什麼
學習不用功,需要人看著學習。
⑨ 什麼是無監督學習
首先看什麼是學習(learning)?一個成語就可概括:舉一反三。此處以高考為例,高考的題目在上考場前我們未必做過,但在高中三年我們做過很多很多題目,懂解題方法,因此考場上面對陌生問題也可以算出答案。機器學習的思路也類似:我們能不能利用一些訓練數據(已經做過的題),使機器能夠利用它們(解題方法)分析未知數據(高考的題目)?
最簡單也最普遍的一類機器學習演算法就是分類(classification)。對於分類,輸入的訓練數據有特徵(feature),有標簽(label)。所謂的學習,其本質就是找到特徵和標簽間的關系(mapping)。這樣當有特徵而無標簽的未知數據輸入時,我們就可以通過已有的關系得到未知數據標簽。
在上述的分類過程中,如果所有訓練數據都有標簽,則為有監督學習(supervised learning)。如果數據沒有標簽,顯然就是無監督學習(unsupervised learning)了,也即聚類(clustering)。