當前位置:首頁 » 城管服務 » 半監督模型

半監督模型

發布時間: 2021-02-01 11:23:01

❶ 適合於多分類的半監督學習演算法有哪些

樸素貝葉斯(Naive Bayes, NB)
超級簡單,就像做一些數數的工作。如果條件獨立假設成立的話,NB將比鑒別模型(如Logistic回歸)收斂的更快,所以你只需要少量的訓練數據。即使條件獨立假設不成立,NB在實際中仍然表現出驚人的好。如果你想做類似半監督學習,或者是既要模型簡單又要性能好,NB值得嘗試。

Logistic回歸(Logistic Regression, LR)
LR有很多方法來對模型正則化。比起NB的條件獨立性假設,LR不需要考慮樣本是否是相關的。與決策樹與支持向量機(SVM)不同,NB有很好的概率解釋,且很容易利用新的訓練數據來更新模型(使用在線梯度下降法)。如果你想要一些概率信息(如,為了更容易的調整分類閾值,得到分類的不確定性,得到置信區間),或者希望將來有更多數據時能方便的更新改進模型,LR是值得使用的。

決策樹(Decision Tree, DT)
DT容易理解與解釋(對某些人而言——不確定我是否也在他們其中)。DT是非參數的,所以你不需要擔心野點(或離群點)和數據是否線性可分的問題(例如,DT可以輕松的處理這種情況:屬於A類的樣本的特徵x取值往往非常小或者非常大,而屬於B類的樣本的特徵x取值在中間范圍)。DT的主要缺點是容易過擬合,這也正是隨機森林(Random Forest, RF)(或者Boosted樹)等集成學習演算法被提出來的原因。此外,RF在很多分類問題中經常表現得最好(我個人相信一般比SVM稍好),且速度快可擴展,也不像SVM那樣需要調整大量的參數,所以最近RF是一個非常流行的演算法。

支持向量機(Support Vector Machine, SVM)
很高的分類正確率,對過擬合有很好的理論保證,選取合適的核函數,面對特徵線性不可分的問題也可以表現得很好。SVM在維數通常很高的文本分類中非常的流行。由於較大的內存需求和繁瑣的調參,我認為RF已經開始威脅其地位了。

回到LR與DT的問題(我更傾向是LR與RF的問題),做個簡單的總結:兩種方法都很快且可擴展。在正確率方面,RF比LR更優。但是LR可以在線更新且提供有用的概率信息。鑒於你在Square(不確定推斷科學家是什麼,應該不是有趣的化身),可能從事欺詐檢測:如果你想快速的調整閾值來改變假陽性率與假陰性率,分類結果中包含概率信息將很有幫助。無論你選擇什麼演算法,如果你的各類樣本數量是不均衡的(在欺詐檢測中經常發生),你需要重新采樣各類數據或者調整你的誤差度量方法來使各類更均衡。

❷ 直推學習是什麼

直推學習是半監督學習中的一種,指在學習過程中的未標記數據就是帶預測的數據。

❸ 半監督學習的起源和發展歷程

SSL的研究歷史可以追溯到20世紀70年代,這一時期,出現了自訓練(Self-Training)、直推學習(Transctive Learning)、生成式模型(Generative Model)等學習方法。
90年代,新的理論的出現,以及自然語言處理、文本分類和計算機視覺中的新應用的發展,促進了SSL的發展,出現了協同訓練(Co-Training)和轉導支持向量機(Transctive Support Vector Machine,TSVM)等新方法。Merz等人在1992年提出了SSL這個術語,並首次將SSL用於分類問題。接著Shahshahani和Landgrebe展開了對SSL的研究。協同訓練方法由Blum和Mitchell提出,基於不同的視圖訓練出兩個不同的學習機,提高了訓練樣本的置信度。Vapnik和Sterin提出了TSVM,用於估計類標簽的線性預測函數。為了求解TSVM,Joachims提出了SVM方法,Bie和Cristianini將TSVM放鬆為半定規劃問題從而進行求解。許多研究學者廣泛研究將期望最大演算法(Expectation Maximum,EM)與高斯混合模型(Gaussian Mixture Model,GMM)相結合的生成式SSL方法。Blum等人提出了最小割法(Mincut),首次將圖論應用於解決SSL問題。Zhu等人提出的調和函數法(Harmonic Function)將預測函數從離散形式擴展到連續形式。由Belkin等人提出的流形正則化法(Manifold Regularization)將流形學習的思想用於SSL場景。Klein等人提出首個用於聚類的半監督距離度量學習方法,學習一種距離度量。

❹ 高斯過程隱變數模型和高斯過程分類的區別

高斯過程來(GPS)是一種良好自的貝葉斯分類方法和回歸過程,也可應用於半監督聚類方面,就此提出了一個新的演算法:使用稀疏高斯過程回歸模型來解決半監督二元分類問題,它是基於支持向量回歸(SVR)和最大空間聚類(MMC)的半監督分類方法,此演算法簡...

❺ 適合於多分類的半監督學習演算法有哪些

maxsoft作為logistics二分類的改進版,天生適合多分類;神經網路(如bp神經網路,隨機權神經網路,RBF神經網路等);通過建立多個支持向量機或者最小二乘支持向量機分類模型,通過投票演算法選擇概率最大的分類標簽;也可以通過聚類演算法(KNN,kMeans等)等無監督學習演算法實現分類。或許不太完善,歡迎補充。(機器學習演算法與Python學習)

❻ 有監督學習和無監督學習的區別

機器學習任務根據訓練樣本是否有label,可以分為監督學習和無監督學習
監督學習的訓練樣本有label,主要是學習得到一個特徵空間到label的映射,如分類、回歸等
無監督學習的訓練樣本沒有label,主要是發現樣本的內部結構,如聚類、降維、可視化等

❼ 機器學習有哪些學習方法

在繼續學,我感覺有一些特定的方式來完成你的思想思維以及思想作為。

❽ 半監督學習的半監督學習的分類

SSL按照統計學習理論的角度包括直推(Transctive)SSL和歸納(Inctive)SSL兩類模式。直推SSL只處理樣本空間內給定的訓練數據,利用訓練數據中有類標簽的樣本和無類標簽的樣例進行訓練,預測訓練數據中無類標簽的樣例的類標簽;歸納SSL處理整個樣本空間中所有給定和未知的樣例,同時利用訓練數據中有類標簽的樣本和無類標簽的樣例,以及未知的測試樣例一起進行訓練,不僅預測訓練數據中無類標簽的樣例的類標簽,更主要的是預測未知的測試樣例的類標簽。
從不同的學習場景看,SSL可分為四大類:
1)半監督分類(Semi-Supervised Classification):在無類標簽的樣例的幫助下訓練有類標簽的樣本,獲得比只用有類標簽的樣本訓練得到的分類器性能更優的分類器,彌補有類標簽的樣本不足的缺點,其中類標簽 取有限離散值 ;
具體的有:
自訓練(Self-Training)、直推學習(Transctive Learning)、生成式模型(Generative Model)、基於差異的方法(Disagreement-Based Methods)、生成式方法(Generative Methods)、判別式方法(DiscriminativeMethods)和基於圖的方法(Graph-Based Methods)等,
2)半監督回歸(Semi-Supervised Regression):在無輸出的輸入的幫助下訓練有輸出的輸入,獲得比只用有輸出的輸入訓練得到的回歸器性能更好的回歸器,其中輸出 取連續值 ;
具體的主要的半監督回歸方法有基於差異的方法和基於流形學習的方法。
3)半監督聚類(Semi-Supervised Clustering):在有類標簽的樣本的信息幫助下獲得比只用無類標簽的樣例得到的結果更好的簇,提高聚類方法的精度;
主要的半監督聚類方法有基於距離的方法和大間隔方法。
4)半監督降維(Semi-Supervised Dimensionality Rection):在有類標簽的樣本的信息幫助下找到高維輸入數據的低維結構,同時保持原始高維數據和成對約束(Pair-Wise Constraints)的結構不變,即在高維空間中滿足正約束(Must-Link Constraints)的樣例在低維空間中相距很近,在高維空間中滿足負約束(Cannot-Link Constraints)的樣例在低維空間中距離很遠。
主要的半監督降維方法有基於類標簽的方法、基於成對約束的方法及其它方法等。 無雜訊干擾的樣本數據是當前大部分半監督學習方法使用的數據,而在實際生活中用到的數據卻大部分不是無干擾的,通常都比較難以得到純樣本數據。上面談論的三個基本假設顯然是有效的,不過過於簡約,這些假設沒能把雜訊干擾下未標記樣本數據分布的不確定性以及它的復雜性充分的考慮全。

熱點內容
影視轉載限制分鍾 發布:2024-08-19 09:13:14 瀏覽:319
韓國電影傷口上紋身找心裡輔導 發布:2024-08-19 09:07:27 瀏覽:156
韓國電影集合3小時 發布:2024-08-19 08:36:11 瀏覽:783
有母乳場景的電影 發布:2024-08-19 08:32:55 瀏覽:451
我准備再看一場電影英語 發布:2024-08-19 08:14:08 瀏覽:996
奧迪a8電影叫什麼三個女救人 發布:2024-08-19 07:56:14 瀏覽:513
邱淑芬風月片全部 發布:2024-08-19 07:53:22 瀏覽:341
善良媽媽的朋友李采潭 發布:2024-08-19 07:33:09 瀏覽:760
哪裡還可以看查理九世 發布:2024-08-19 07:29:07 瀏覽:143
看電影需要多少幀數 發布:2024-08-19 07:23:14 瀏覽:121