當前位置:首頁 » 城管服務 » 監督學習方法

監督學習方法

發布時間: 2021-01-02 20:02:31

㈠ 現在有沒有直接對低層進行有監督學習的深度學習方法

聽他人說的:無監督與監督學習的區別在於一個無教學值,一個有教學值。但是內,個人認為他們的區別容在於無監督學習一般是採用聚簇等演算法來分類不同樣本。而監督學習一般是利用教學值與實際輸出值產生的誤差,進行誤差反向傳播修改權值來完成網路修正的。但是無監督學習沒有反向傳播修改權值操作,當然這里只是說的是特徵提取階段。

㈡ 什麼是無監督學習

監督學習
利用一組已知類別的樣本調整分類器的參數,使其達到所要求性能的過程,也稱為監督訓練或有教師學習。正如人們通過已知病例學習診斷技術那樣,計算機要通過學習才能具有識別各種事物和現象的能力。用來進行學習的材料就是與被識別對象屬於同類的有限數量樣本。監督學習中在給予計算機學習樣本的同時,還告訴計算各個樣本所屬的類別。若所給的學習樣本不帶有類別信息,就是無監督學習。任何一種學習都有一定的目的,對於模式識別來說,就是要通過有限數量樣本的學習,使分類器在對無限多個模式進行分類時所產生的錯誤概率最小。
不同設計方法的分類器有不同的學習演算法。對於貝葉斯分類器來說,就是用學習樣本估計特徵向量的類條件概率密度函數。在已知類條件概率密度函數形式的條件下,用給定的獨立和隨機獲取的樣本集,根據最大似然法或貝葉斯學習估計出類條件概率密度函數的參數。例如,假定模式的特徵向量服從正態分布,樣本的平均特徵向量和樣本協方差矩陣就是正態分布的均值向量和協方差矩陣的最大似然估計。在類條件概率密度函數的形式未知的情況下,有各種非參數方法,用學習樣本對類條件概率密度函數進行估計。在分類決策規則用判別函數表示的一般情況下,可以確定一個學習目標,例如使分類器對所給樣本進行分類的結果盡可能與「教師」所給的類別一致,然後用迭代優化演算法求取判別函數中的參數值。
在無監督學習的情況下,用全部學習樣本可以估計混合概率密度函數,若認為每一模式類的概率密度函數只有一個極大值,則可以根據混合概率密度函數的形狀求出用來把各類分開的分界面。

㈢ 監督學習的實例分析:

正如人們通過已知病例學習診斷技術那樣,計算機要通過學習才能具有識別各種事物和現象的能力。用來進行學習的材料就是與被識別對象屬於同類的有限數量樣本。監督學習中在給予計算機學習樣本的同時,還告訴計算各個樣本所屬的類別。若所給的學習樣本不帶有類別信息,就是無監督學習。任何一種學習都有一定的目的,對於模式識別來說,就是要通過有限數量樣本的學習,使分類器在對無限多個模式進行分類時所產生的錯誤概率最小。
不同設計方法的分類器有不同的學習演算法。對於貝葉斯分類器來說,就是用學習樣本估計特徵向量的類條件概率密度函數。在已知類條件概率密度函數形式的條件下,用給定的獨立和隨機獲取的樣本集,根據最大似然法或貝葉斯學習估計出類條件概率密度函數的參數。例如,假定模式的特徵向量服從正態分布,樣本的平均特徵向量和樣本協方差矩陣就是正態分布的均值向量和協方差矩陣的最大似然估計。在類條件概率密度函數的形式未知的情況下,有各種非參數方法,用學習樣本對類條件概率密度函數進行估計。在分類決策規則用判別函數表示的一般情況下,可以確定一個學習目標,例如使分類器對所給樣本進行分類的結果盡可能與「教師」所給的類別一致,然後用迭代優化演算法求取判別函數中的參數值。
在無監督學習的情況下,用全部學習樣本可以估計混合概率密度函數,若認為每一模式類的概率密度函數只有一個極大值,則可以根據混合概率密度函數的形狀求出用來把各類分開的分界面。
監督學習方法是目前研究較為廣泛的一種機器學習方法,例如神經網路傳播演算法、決策樹學習演算法等已在許多領域中得到成功的應用,但是,監督學習需要給出不同環境狀態下的期望輸出(即導師信號),完成的是與環境沒有交互的記憶和知識重組的功能,因此限制了該方法在復雜的優化控制問題中的應用。

㈣ 監督學習和無監督學習的區別

機器學習的常用方法,主要分為有監督學習(supervised learning)和無監督學習(unsupervised learning)。

監督學習,就是人們常說的分類,通過已有的訓練樣本(即已知數據以及其對應的輸出)去訓練得到一個最優模型(這個模型屬於某個函數的集合,最優則表示在某個評價准則下是最佳的),再利用這個模型將所有的輸入映射為相應的輸出,對輸出進行簡單的判斷從而實現分類的目的,也就具有了對未知數據進行分類的能力。在人對事物的認識中,我們從孩子開始就被大人們教授這是鳥啊、那是豬啊、那是房子啊,等等。我們所見到的景物就是輸入數據,而大人們對這些景物的判斷結果(是房子還是鳥啊)就是相應的輸出。當我們見識多了以後,腦子里就慢慢地得到了一些泛化的模型,這就是訓練得到的那個(或者那些)函數,從而不需要大人在旁邊指點的時候,我們也能分辨的出來哪些是房子,哪些是鳥。監督學習里典型的例子就是KNN、SVM。

無監督學習(也有人叫非監督學習,反正都差不多)則是另一種研究的比較多的學習方法,它與監督學習的不同之處,在於我們事先沒有任何訓練樣本,而需要直接對數據進行建模。這聽起來似乎有點不可思議,但是在我們自身認識世界的過程中很多處都用到了無監督學習。比如我們去參觀一個畫展,我們完全對藝術一無所知,但是欣賞完多幅作品之後,我們也能把它們分成不同的派別(比如哪些更朦朧一點,哪些更寫實一些,即使我們不知道什麼叫做朦朧派,什麼叫做寫實派,但是至少我們能把他們分為兩個類)。無監督學習里典型的例子就是聚類了。聚類的目的在於把相似的東西聚在一起,而我們並不關心這一類是什麼。因此,一個聚類演算法通常只需要知道如何計算相似度就可以開始工作了。

㈤ 機器學習 一 監督學習和無監督學習的區別

1、機器學習按照方法來分類,可以分成四類,分別是:監督學習、無監督學習、半監督學習和強化學習。
2、監督學習針對有標簽數據集,它通過學習出一個模型(其實就是一個函數)來擬合數據,按照模型(函數)的輸出結果是否離散又可以分為兩類,分別是:(1)輸出結果為離散值,則為分類問題(常見的分類演算法:KNN、貝葉斯分類器、決策樹、SVM、神經網路、GBDT、隨機森林等);(2)輸出結果為連續值,則為回歸問題(有線性回歸和邏輯回歸兩種)。
3、無監督學習針對沒有標簽的數據集,它將樣本按照距離劃分成類簇,使得類內相似性最大,類間相似性最小。通過觀察聚類結果,我們可以得到數據集的分布情況,為進一步分析提供支撐。常見的聚類演算法有K-means、高斯混合模型和LDA。

㈥ 無監督學習比如簡單的聚類分析真的是「學習」嗎

聚類通過把目標數據放入少數相對同源的組或「類」(cluster)里。分析表達數據,(1)通過一系列的檢測將待測的一組基因的變異標准化,然後成對比較線性協方差。(2)通過把用最緊密關聯的譜來放基因進行樣本聚類,例如用簡單的層級聚類(hierarchicalclustering)方法。這種聚類亦可擴展到每個實驗樣本,利用一組基因總的線性相關進行聚類。(3)多維等級分析(,MDS)是一種在二維Euclidean「距離」中顯示實驗樣本相關的大約程度。(4)K-means方法聚類,通過重復再分配類成員來使「類」內分散度最小化的方法。聚類方法有兩個顯著的局限:首先,要聚類結果要明確就需分離度很好(well-separated)的數據。幾乎所有現存的演算法都是從互相區別的不重疊的類數據中產生同樣的聚類。但是,如果類是擴散且互相滲透,那麼每種演算法的的結果將有點不同。結果,每種演算法界定的邊界不清,每種聚類演算法得到各自的最適結果,每個數據部分將產生單一的信息。為解釋因不同演算法使同樣數據產生不同結果,必須注意判斷不同的方式。對遺傳學家來說,正確解釋來自任一演算法的聚類內容的實際結果是困難的(特別是邊界)。最終,將需要經驗可信度通過序列比較來指導聚類解釋。第二個局限由線性相關產生。上述的所有聚類方法分析的僅是簡單的一對一的關系。因為只是成對的線性比較,大大減少發現表達類型關系的計算量,但忽視了生物系統多因素和非線性的特點。從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k-均值、k-中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。從機器學習的角度講,簇相當於隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習演算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。就數據挖掘功能而言,聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特徵,集中對特定的聚簇集合作進一步地分析。聚類分析還可以作為其他數據挖掘任務(如分類、關聯規則)的預處理步驟。數據挖掘領域主要研究面向大型資料庫、數據倉庫的高效實用的聚類分析演算法。聚類分析是數據挖掘中的一個很活躍的研究領域,並提出了許多聚類演算法。這些演算法可以被分為劃分方法、層次方法、基於密度方法、基於網格方法和基於模型方法。1劃分方法(PAM:PArtitioningmethod)首先創建k個劃分,k為要創建的劃分個數;然後利用一個循環定位技術通過將對象從一個劃分移到另一個劃分來幫助改善劃分質量。典型的劃分方法包括:k-means,k-medoids,CLARA(ClusteringLARgeApplication),CLARANS().FCM2層次方法(hierarchicalmethod)創建一個層次以分解給定的數據集。該方法可以分為自上而下(分解)和自下而上(合並)兩種操作方式。為彌補分解與合並的不足,層次合並經常要與其它聚類方法相結合,如循環定位。典型的這類方法包括:第一個是;BIRCH()方法,它首先利用樹的結構對對象集進行劃分;然後再利用其它聚類方法對這些聚類進行優化。第二個是CURE()方法,它利用固定數目代表對象來表示相應聚類;然後對各聚類按照指定量(向聚類中心)進行收縮。第三個是ROCK方法,它利用聚類間的連接進行聚類合並。最後一個CHEMALOEN,它則是在層次聚類時構造動態模型。3基於密度方法,根據密度完成對象的聚類。它根據對象周圍的密度(如DBSCAN)不斷增長聚類。典型的基於密度方法包括:DBSCAN(Densit-):該演算法通過不斷生長足夠高密度區域來進行聚類;它能從含有雜訊的空間資料庫中發現任意形狀的聚類。此方法將一個聚類定義為一組「密度連接」的點集。OPTICS():並不明確產生一個聚類,而是為自動交互的聚類分析計算出一個增強聚類順序。。4基於網格方法,首先將對象空間劃分為有限個單元以構成網格結構;然後利用網格結構完成聚類。STING(STatisticalINformationGrid)就是一個利用網格單元保存的統計信息進行基於網格聚類的方法。CLIQUE(ClusteringInQUEst)和Wave-Cluster則是一個將基於網格與基於密度相結合的方法。5基於模型方法,它假設每個聚類的模型並發現適合相應模型的數據。典型的基於模型方法包括:統計方法COBWEB:是一個常用的且簡單的增量式概念聚類方法。它的輸入對象是採用符號量(屬性-值)對來加以描述的。採用分類樹的形式來創建一個層次聚類。CLASSIT是COBWEB的另一個版本.。它可以對連續取值屬性進行增量式聚類。它為每個結點中的每個屬性保存相應的連續正態分布(均值與方差);並利用一個改進的分類能力描述方法,即不象COBWEB那樣計算離散屬性(取值)和而是對連續屬性求積分。但是CLASSIT方法也存在與COBWEB類似的問題。因此它們都不適合對大資料庫進行聚類處理.

㈦ 非監督學習有哪些

無監督學習(Unsupervised Learning)是和監督學習相對的另一種主流機器學習的方法,我們知道監督學習解決的是「分類」和「回歸」問題,而無監督學習解決的主要是「聚類(Clustering)」問題。

從無監督學習說起:演算法模型有哪幾種?

監督學習通過對數據進行標注,來讓機器學習到,比如:小曹多重多高就是胖紙,或者用身高體重等數據,來計算得到小曹的BMI系數;而無監督學習則沒有任何的數據標注(超過多高算高,超過多重算胖),只有數據本身。

比如:有一大群人,知道他們的身高體重,但是我們不告訴機器「胖」和「瘦」的評判標准,聚類就是讓機器根據數據間的相似度,把這些人分成幾個類別。

那它是怎麼實現的呢?怎麼才能判斷哪些數據屬於一類呢?

這是幾種常見的主要用於無監督學習的演算法。

K均值(K-Means)演算法;
自編碼器(Auto-Encoder);
主成分分析(Principal Component Analysis)。
K均值演算法
K均值演算法有這么幾步:

從無監督學習說起:演算法模型有哪幾種?

隨機的選取K個中心點,代表K個類別;
計算N個樣本點和K個中心點之間的歐氏距離;
將每個樣本點劃分到最近的(歐氏距離最小的)中心點類別中——迭代1;
計算每個類別中樣本點的均值,得到K個均值,將K個均值作為新的中心點——迭代2;
重復234;
得到收斂後的K個中心點(中心點不再變化)——迭代4。
上面提到的歐氏距離(Euclidean Distance),又叫歐幾里得距離,表示歐幾里得空間中兩點間的距離。我們初中學過的坐標系,就是二維的歐幾里得空間,歐氏距離就是兩點間的距離,三維同理,多維空間的計算方式和三維二維相同。

㈧ 自我學習,監督學習,半監督學習和遷移學習的區別

自我學習和半監督學習一樣,當前手頭上只有少量訓練樣本,但是周圍手頭上還有版大量無標注樣本。舉一權個經典的例子,分離大象和犀牛。對於監督學習來說,我們手頭有大量大象的樣本和犀牛的樣本,接下來訓練分類器,進行分類,大家都知道的。對於遷移學習,則是指我們手頭上有大量羊的樣本和馬的樣本(已標記),少量的大象和犀牛的樣本,接下來就要從羊和馬的樣本中選出有效的樣本分別加入到大象和犀牛的標記樣本中,然後再用監督學習的方法訓練分類器。而非監督學習,則是手上僅有少量大象和犀牛的已標記樣本,另外有一堆大象和犀牛的沒有標記的數據(注意它們中要麼是大象要麼是犀牛,沒有其他物種)。半監督學習就是利用這些樣本訓練分類器,實現分類。而自我學習,同樣是手上僅有少量大象和犀牛的已標記樣本,另外有一大堆自然圖像。所謂自然圖像,就是有大象和犀牛的圖片,還有各種其他物種的圖片。自我學習比半監督學習更適合實際場景—–哪有一堆只有大象和犀牛的圖片給你呢?而自然圖像的來源更加廣泛,可以從互聯網上隨便下載。 轉載網路。

㈨ 監督學習的神經網路是啥意思!

用樣本去訓練一個BP網路,然後用新的樣本作為輸入,再通過這個已經訓練好的BP網路,得到的數據就是模擬的結果,這就是BP網路模擬。我們訓練一個BP網路就好像是在訓練一個神經系統,然後用這個已經具備分析能力的神經系統去分析事情,這就是為什麼要模擬,說到底就是為了用。模擬的作用你可以從BP神經網路的用途上去看,例如很經典的可以用來做分類器等。你用不同類別的樣本(輸入+對應的期望輸出)作為訓練,然後給出一個新的輸入,BP網就能給你這個所屬的類別。

熱點內容
影視轉載限制分鍾 發布:2024-08-19 09:13:14 瀏覽:319
韓國電影傷口上紋身找心裡輔導 發布:2024-08-19 09:07:27 瀏覽:156
韓國電影集合3小時 發布:2024-08-19 08:36:11 瀏覽:783
有母乳場景的電影 發布:2024-08-19 08:32:55 瀏覽:451
我准備再看一場電影英語 發布:2024-08-19 08:14:08 瀏覽:996
奧迪a8電影叫什麼三個女救人 發布:2024-08-19 07:56:14 瀏覽:513
邱淑芬風月片全部 發布:2024-08-19 07:53:22 瀏覽:341
善良媽媽的朋友李采潭 發布:2024-08-19 07:33:09 瀏覽:760
哪裡還可以看查理九世 發布:2024-08-19 07:29:07 瀏覽:143
看電影需要多少幀數 發布:2024-08-19 07:23:14 瀏覽:121